
:' .•

-

IMPORTANT INFORMATION

Please make the following corrections to your Model 4 BASIC
Compiler User's Manual:

Page 17, Step 7

Type BACKUP :J :1 (X) <ENTER>

Page 18, Step 4

Enter:

*DEMO, TTY=DEMO

Pages 65-66

Please note that the source listing format on these
pages may not be identical to a BASIC program compiled with
the -A switch.

Thank You!
Radio Shack

A Division of Tandy Corporation

-

-

The BASIC Compiler is an optimizing compiler designed to
complement the BASIC Interpreter. The BASIC Compiler lets you
create programs that in most cases execute faster than the same
interpreted programs, require less memory than the same
interpreted programs, and provide source-code security.

These benefits can be critical in the following areas:

• Graphics applications, in which execution speed can often
make or break software

• Business apphcat,ons, ,n which several CHAINed programs
can be supported by a main menu

Introduction

• Commercial applications, for which software is being sold in
a competitive marketplace and source-code security is
essential.

The BASIC Compiler supports most of the interpreted BASIC
language. Thus, the interpreter and the compiler complement each
other, providing an extremely powerful programming environment.
You can quickly run and debug a program from within the BASIC
Interpreter, and then later compile the program to increase its speed
of execution and to decrease its space in memory.

An additional BASIC Compiler feature is BASRUN/CMD, a runtime
module that contains most of the runtime environment. The runtime
module is loaded when program execution begins, and later
execution of CHAINed programs does not require reloading. This
lets you develop a system of related programs that can be run using
the same runtime environment. And because the runtime
environment required by your program need not be saved on disk
as part of your executable file, a substantial amount of disk space is
saved - typically 45K for a system of four programs.

Although the language supported by the BASIC Compiler is not
completely identical to that supported by the BASIC Interpreter, the
compiler is designed so that compatibility is maintained wherever
possible. The BASIC Compiler supports, in some form, all the
statements and commands described in the BASIC Reference
Manual except:

AUTO
CLOAD
CSAVE
CONT
DELETE
EDIT
ERASE
LIST
LLIST
LOAD
MERGE
NEW
RENUM
SAVE
SOUND

Note: Language, operational, and other differences between the
BASIC Compiler and Interpreter are described in Chapter 9 of this
manual. Review that information before compiling any of your
programs, even those that already run without problem on the
interpreter.

2

... \ .,

-

··-

System Requirements

The BASIC Compiler requires a TRS-80 Model 4 computer with a
minimum of 64K RAM and 2 disk drives. The compiler operates
under the TRSDOS 6 operating system.

3

Royalty Information

For those who want to market application programs, the BASIC
Compiler provides three major benefits:

1. Increased speed of execution for most programs

2. Decreased program size for most programs

3. Source code security

When you distribute a BASIC compiled program, you distribute
highly optimized machine code, not source code. Consequently,
you distribute your program in very compact form and protect your
source program from unauthorized alteration. ·

The policy for distribution of parts of the BASIC Compiler package
is as follows:

1. Any application program that you generate by linking to either
of the two runtime libraries (BASRUN/REL and BASCOM/REL)
may be distributed without payment of royalties. A copyright
notice reading "PORTIONS COPYRIGHTED BY MICROSOFT
CORPORATION, 1982" must be displayed on the media. Note
that programs linked to BASRUN/REL need the runtime module
to execute properly.

2. However, the BASRUN/CMD runtime module cannot be
distributed without first entering into a license agreement with
Corporation for such distribution. A copy of the license
agreement can be readily obtained by writing to Corporation.
Also, a copyright notice reading "PORTIONS COPYRIGHTED A
BY MICROSOFT CORPORATION, 1982" must be displayed on ..
the media.

3. All other software in your BASIC Compiler package cannot be
duplicated except for purposes of backing up your software.
Other duplication of any of the software in the BASIC Compiler
package is illegal.

All the above information is included in the Nondisclosure
Agreement, which must be signed and returned to Microsoft at the
time the BASIC Compiler is purchased. In order to provide you any
updates or fixes, we must have your completed form on file.
Failure to register and sign the Nondisclosure Agreement voids
any warranty expressed or implied.

4

(.

·-

Package Contents

The BASIC Compiler package contains one data disk and one
documentation binder.

The BASIC Compiler software contains the following files on disk:

BASCOM/GMO - (the BASIC Compiler) Compiles BASIC
source files into relocatable and linkable REL files.

BASRUN/CMD (the runtime module) A single module
containing most of the routines called from your compiled
REL file.

BASRUN/REL - (the runtime library) A collection of routines
implementing functions of the BASIC language not found in
the runtime module. Your REL file may contain calls to
these routines.

BASCOM/REL - (the alternate runtime library) A collection of
modules containing routines that are similar to the routines
found in BASRUN/REL and the runtime module. This library
should be used for applications that you want to execute as
single executable files without the runtime module. This
library does not support CHAIN with COMMON, CLEAR, or
RUN <linenumber>. Additional differences are described
in Chapter 6, "Linking and Loading."

BCLOAD/L80 - (runtime load information) Tells at what
address to load your program, and where to find the
runtime module at runtime.

DEMO/BAS - (a demonstration program) Used in Chapter 2
to demonstrate program development with the BASIC
Compiler.

L80/CMD - (the linking loader) Loads the relocatable REL files
into memory, links them into an executable object file, and
saves the executable file on your disk.

BASIC Compiler User's Manual

The User's Manual provides a demonstration run, an introduction
to compilation, and a technical reference for use of the BASIC
Compiler. It also describes language differences between the
BASIC Compiler and the BASIC Interpreter.

Model 4
BASIC Reference Manual

The Reference Manual explains syntax and usage of the BASIC
language. With the exceptions noted in the User's Manual, this is
the language supported by the BASIC Compiler.

5

Software

Documentation

How To Use This Manual

The BASIC Compiler User's Manual is designed for users who are
not familiar with the compiler as a programming tool. Therefore, the
manual provides a step-by-step introduction to the BASIC
Compiler and its use.

This manual assumes a working knowledge of the BASIC
language. For reference information, consult the BASIC Reference
Manual. If you need additional information on BASIC programming,
refer to "Learning More about BASIC," below.

INTRODUCTION

Provides brief descriptions of the contents of the BASIC
Compiler package and gives a list of references for learning
BASIC programming.

Chapter 1 INTRODUCTION TO COMPILATION

Introduces you to the vocabulary associated with compilers,
compares interpretation and compilation, and presents an
overview of program development with the compiler.

Chapter 2 DEMONSTRATION RUN

Takes you step by step through compiling, linking, and
running a demonstration program.

Chapter 3 EDITING A SOURCE PROGRAM

Describes how to create a BASIC source program for later
compilation.

Chapter 4 DEBUGGING WITH THE BASIC INTERPRETER

Describes how to debug a BASIC source file with the BASIC
Interpreter before compiling it.

Chapter 5 COMPILING

Describes in detail the use of the BASIC Compiler, including
command line syntax and compiler options.

Chapter 6 LINKING AND LOADING

Explains how to use L80 to link your programs to needed
runtime support.

Chapter 7 RUNNING A PROGRAM

Explains how to run your final executable program.

Chapter 8 METACOMMANDS

Explains how to use the metacommands available with BASIC
Compiler.

Chapter 9 A COMPILER/INTERPRETER LANGUAGE
COMPARISON

Describes all the language, operational, and other differences
between the languages supported by the BASIC Compiler
and the BASIC Interpreter. It is important to study these ~
differences and to make the necessary editing changes in W ·
your BASIC program before you use the compiler.

6

-

•

The Appendices provide additional technical information and list all
BASIC compile time, link time, and runtime error messages.

7

Syntax Notation

[] Square brackets indicate that the enclosed entry is optional. -

< > Angle brackets indicate data you enter. When the angle

{ }

brackets enclose lowercase text, you must type in an entry
defined by the text; for example, <filename>. When the
angle brackets enclose uppercase text. you must press the
key named by the text; for example, <RETURN>.

Braces indicate that the you have a choice between two or
more entries. You must choose at least one of the entries
enclosed in braces unless the entries are also enclosed 1n
square brackets.

A vertical bar separates entries within braces. You must
choose at least one of the entries separated by bar(s) unless
the entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many
times as needed or desired.

CAPS Capital letters indicate portions of statements or commands
that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered, exactly as shown.

8

-

••

·-

-

Learning More About BASIC

The manuals in this package provide complete reference information
for your implementation of the BASIC Compiler. They do not, however,
teach you how to write programs in BASIC. If you are new to BASIC
or need help in learning to program, we suggest you read one of the
following books:

Getting Started with TRS-8@ BASIC. Radio Shack Catalog #26-2107.

Albrecht, Robert L., Finkel, LeRoy, and Brown, Jerry. BASIC. New
York: Wiley lnterscience, 2d ed., 1978.

Billings, Karen, and Moursund, David. Are You Computer Literate?
Beaverton, Oregon: dilithium Press, 1979.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book
Company, 1978.

Dwyer, Thomas A., and Critchfield, Margot. BASIC and the Personal
Computer. Reading, Mass.: Addison Wesley Publishing Company,
1978.

Simon, David E. BASIC From the Ground Up. Rochelle Park, N.J.:
Hayden Book Company, 1978.

9

CHAPTER 1

-

-

Introduction to Compilation

1.1 Compilation v Interpretation
A microprocessor can execute only its own machine instructions; it
cannot execute source program statements directly. Therefore,
before you can execute a BASIC program, it must be translated into
the machine language of your microprocessor. Compilers and
interpreters are two types of translation programs. This chapter
explains the difference between these two translation schemes and
explains why and when to use the compiler.

Interpretation
BASIC Interpreters (including Disk BASIC and Level II BASIC)
translate a BASIC program line by line at runtime. To execute a
BASIC statement, the interpreter must analyze the statement, check
for errors, and then perform the function requested.

If a statement must be executed repeatedly (inside a FOR/NEXT
loop, for example), this translation process must be repeated each
time the statement is executed.

BASIC programs are stored as a list of numbered lines. During
interpretation, a line is not available as an absolute memory address.
Therefore, branches such as GOTOs and GOSUBs cause the
interpreter to examine all line numbers in the list, starting with the
first, until it finds the referenced line.

Similarly, the interpreter maintains a list of all variables. Absolute
memory addresses are not associated with the variables in your
program. When a statement refers to a variable, the interpreter must
search the variables from the beginning until it finds the referenced
variable.

Compilation
A compiler translates a source program and creates a new file
called an object file. The object file contains "relocatable" machine
code, which can be placed and run at different absolute locations in
memory. All translation occurs before runtime; no translation occurs
during execution of the object file. In addition, absolute memory
addresses are associated with variables and with the targets of
GOTOs and GOSUBs; so lists of variables or of line numbers do not
have to be searched during program execution.

The BASIC Compiler is an "optimizing" compiler. Optimizations such
as expression reordering and subexpression elimination are made
either to increase speed of execution or to decrease program size.

In most cases, BASIC programs execute 3 to 1 Q) times faster than
those executed under the interpreter. If you make maximum use of
integer variables, execution can be up to 30 times faster: Note,
however, that the compiler is not a panacea; you should also
examine the algorithms in your programs and the type of
processing performed when attempting to increase execution speed.

11

1.2 Vocabulary
A BASIC program is more commonly called a BASIC "source
program" or "source file." The source file is the input file to the
compiler and must be in ASCII format. The compiler translates this
source and creates, as output, a new file called a "relocatable
object" file. The source file has the default extension /BAS, and the
relocatable object file has the default extension /REL.

The following terms are stages in the development and execution of
a compiled program:

Compiletime - The time during which the compiler is executing
and during which it compiles a BASIC source file and creates a
relocatable object file.

Link time - The time during which the linker is executing and
during which it loads and links together relocatable object files and
library files.

Runtime - The time during which a compiled and linked program
is executing. By convention, runtime refers to the execution time of
your program and not to the execution time of the compiler or the
linker:

The following terms pertain to the linking process and the runtime
support library:

Module - A discrete unit of code. There are several types of
modules, including relocatable and executable modules. The
compiler creates relocatable modules that the linker can load. Your
final executable program is an executable module.

Global Reference - A variable name or label in a given module
that is referenced by a routine in another module. Global labels are
entry points into modules.

Unbound Global Reference - A global reference in a module that
is not declared in that module. The linker tries to resolve this
situation by searching for the declaration of that reference in other
modules. If it finds such a declaration, it loads that _module into
memory (if it is not yet in memory), and it becomes part of the load
file. These other modules are usually library modules in the runtime
library.

If the variable or label is found, the address associated with it is
substituted for the reference in the first module and is then said to
be "bound." When a variable is not found, it is said to be
"undefined."

-

-·

Relocatable - A module is relocatable if the code within it can be
placed and run at different locations in memory. Relocatable
modules contain labels and variables represented as offsets relative
to the start of the module. These labels and variables are said to be
"code relative." When the linker loads the module, an address is
associated with the start of the module. The linker then computes an - -.
absolute address that is equal to the associated address plus the

12

-

-

-

code relative offset for each label or variable. These new computed
values become the absolute addresses that are used in the
executable file.

Compiled REL files and library files are all relocatable modules.
Normally a relocatable module also contains global references.
These are resolved after all local labels and variables have been
computed within other relocatable modules. Linking is this process
of computing absolute relocated values and resolving global
references.

Routine - Executable code residing in a module. More thrm one
routine may reside in a module. The runtime module contains a
majority of the library routines needed to implement the BASIC
language. A library routine usually corresponds to a feature or
subfeature of the BASIC language.

Runtime Support - The body of routines that may. be linked to
your compiled REL file. These routines implement various features of
the BASIC language. Both the runtime libraries and the runtime
module contain runtime support routines. See Chapter 6, "Linking
and Loading," for more information on runtime support.

The Runtime Module - A module containing most of the routines
needed to implement the BASIC language. It is a peculiarity of the
runtime module that it is an executable file. The runtime module is
named BASRUN/CMD. The runtime module is, for the most part, a
library of routines. It is made executable so that you can see the
version number of the module.

The BASRUN/REL Runtime Library - A few modules used to
load in the runtime module at runtime and to move segments around
in memory to permit CHAINing.

The BASCOM/REL Runtime Library - A collection of modules
containing routines almost identical in function to similar routines
contained in the runtime module and BASRUN/REL.

However, this library does not support the COMMON statement
between CHAINed programs. It does support a version of CHAIN
that is semantically equivalent to the simple RUN <filename>
command.

Linking - The process in which LS© loads modules into memory,
computes absolute addresses for labels and variables in relocatable
modules, and then resolves all global references by searching the
BASRUN/REL runtime library. After loading and linking, the linker
saves the modules that it has loaded into memory as a single
executable file on your disk.

1.3 The Program Development Process
(The numbers in parentheses refer to Figure 2.1.)

Program development begins with creating (1) a BASIC source file.
The best way to create a BASIC source file is with the editing
facilities of the BASIC Interpreter, although you can use any

13

general purpose text editor. You must SAVE from the BASIC
Interpreter with the ,A option.

After you write a program, use the BASIC Interpreter to debug the
program (2) by running it to check for syntax and program logic
errors. There are a few differences in the languages understood by
the compiler and the interpreter, but for the most part they are
identical. Because of this similarity, running a program provides
you with a much quicker syntactic and semantic check of your
program than compiling, linking, and finally executing a program.
Therefore, you should try to make the interpreter your chief
debugging tool.

After you debug your program with the interpreter, compile it (3) to
determine differences that may exist between interpreted and
compiled BASIC. The compiler flags all syntax errors as it reads
your source file. If compilation is successful, the compiler creates
a relocatable REL file.

The REL file is not executable and must be linked to one of the
runtime libraries (in Figure 2-1 and in the demonstration in Chapter
2, the BASRUN/REL runtime library is used). You may want to
include your own assembly language routines to increase the
speed of execution of a particular algorithm, or to handle more•
complex operations. For these cases, use the Editor Assembler to
assemble routines (4) that you can later link to your program.
Similarly, separately compiled FORTRAN subroutines can be linked
to your program.

The linker links all modules (5) needed by your program, and
produces as output an executable object file with CMD as the
default extension. This file can be executed (6) like any CMD file
by simply typing the file's base name (the file name less its CMD
extension).

This program development process is demonstrated in the
following chapter, Chapter 2, "Demonstration Run."

14

•~

-

-

BASIC
Interpreter

+
BASIC Source

!
._,,,'-'IV

Interpreter

yes 1
bugs?

+ no

BASIC
Compiler

' yes
bugs?

* no
Relocatable
object file

!
L80
Linker

'

CMD file

l

.._

1 Create
and edit
BASIC
source

2. RUN and
debug program
with interpreter,
and SAVE.

3. Compile BASIC
Source, creating
REL file

4. Assemble ASM
sources if any

BASRUN/REL

Text
Editor

5 . Link compiled REL file to
library, and ASM routines

The Runtime Module

6. Execute CMD file

(The Runtime Module and
CMD file are loaded
into memory from disk)

Figure 2.1 The Program Development Process

15

Assembler
Source

l
Editor
Assembler

!
ASM/REL

CHAPTER 2

-

-

-

Demonstration Run

This chapter provides step by step instructions for using the
BASIC Compiler. We strongly recommend that you compile the
demonstration program in this chapter before compiling any other
programs. For more technical information, read Chapters 3 through
9.

If you enter commands exactly as described in this chapter, you
should have a successful session with the BASIC Compiler. If a
problem does arise, carefully redo each step.

Before you begin this demonstration run, back up your BASIC
Compiler diskette. Follow the procedure below exactly.

1. Turn on your system as instructed in the Introduction to Your
Disk System manual.

2. Insert a new, blank diskette in Drive 1 and close the drive door.

3. Insert your TRSDOS system diskette in Drive 0 and close the
door.

4. Press the reset button.

5. The screen shows:

Date MM/DD/YY?

Enter the date. For example, for July 1, 1984, type 07/01/84 ..

6. When TRSDOS Ready appears, type FORMAT :1 (Q = N)
CEtmfl).

7. When the formatting process is complete, your screen shows:

ForMattin~ COMPlete

TRSDOS Ready

Type BACKUP :0 TO :1X (ENTER).

8. After the copyright notice appears, the screen shows:

Insert SOURCE disK <ENTER>

Remove your TRSDOS system diskette, insert your BASIC
Compiler diskette in Drive 0, and close the door. Press CENTER).

When the backup is complete, the screen shows:

Insert SYSTEM disK <ENTER>

Remove your backup diskette from Drive 0, insert your system
diskette, and press (ENTER).

Check to see if the backup procedure was successful:

1. Remove the original diskette from Drive 1.

2. Place the backup diskette in Drive 1 and close the drive door.

3. Type DIR :1 CENfEm.
If the screen displays the directory, your backup was
successful.

17

•

When you remove the backup diskette from Drive 0, write the
diskette name on the label, using a felt-tipped pen.

Store your master diskette in a safe place and always work with
the backup copy.

The major stages in developing a program with the BASIC
Compiler are:

1. Editing and debugging (entering and correcting the BASIC
program, using a BASIC Interpreter)

2. Compiling (creating a relocatable object file)

3. Linking (creating an executable object file)

4. Running (executing the program)

Because we have prepared an edited and debugged
demonstration program on disk, you do not have to perform the
first two steps described below. Note that we have SAVEd the
demonstration program on disk in ASCII format by using the ,A
option. All files must be in ASCII format to be readable by the.
compiler.

To create an executable compiled program, perform the following
steps:

1. Start up your computer system.

2. Create a BASIC source file.

BASIC programs can be created with any available text editor that
will create a text file with a logical record length of 1. However, for
this demonstration run we will use the program DEMO/BAS, which
is provided on your disk. For consistency, BASIC source files
should always be given the /BAS extension.

3. To enter the compiler type:

BASCOM

. 4. Enter the command line.

After you invoke the compiler, it prints an asterisk to prompt you
for the command line. Enter:

*DEMD,:TTY=DEMD

This command begins compilation of the source file. The source
file is the last entry on the command line (DEMO), and the /BAS
default extension is assumed.

The compiler generates relocatable object code that is stored in
the file specified by the first entry on the command line (DEMO).
This file is created with the default /REL extension.

-

The source listing file is the second entry on the command line.
The source listing file is created during compilation. It lists your
BASIC source and any compilation errors or warnings as they
occur. If no listing file is specified in the command line, none will -
be generated. For this demonstration, we specified TTY in order to ·
send the source listing file to the console screen.

18

•

-

-

After you have completed your input, compilation begins. The
source listing file is sent to the console screen as the source file is
read.

5. Look for error messages.

As your program is compiled, error messages are displayed on the
terminal screen. For the demonstration program, there should be
no error messages displayed. When the compiler has finished, it
displays the message:

18328 6Ytes Available
18868 6Ytes Free

0 Warnins Error(s)
0 Severe Error(s)

(The number of bytes available and bytes free varies with a
particular system.) Program control is then returned to the
operating system.

At this point, you should see a new file named DEMO/REL listed in
the directory.

Note: If your screen shows the error message "Binary Source
File," save your program in ASCII format using the -A option.

6. Link routines in the runtime library to your REL file.

Linking is accomplished with the L80 linker (the file named
L80CMD). Perform the following steps to link DEMO/REL to needed
runtime support.

a. Invoke L80.

To invoke L80, enter:

L80

Your computer will search your disk for L80, load it, and
then return the asterisk (*) prompt.

If you want to stop the linking process, and you have
entered only L80 and nothing more, you can exit to
TRSDOS by pressing the <BREAK> key.

b. Enter the name(s) of file(s) you want loaded and linked.

L80 performs the following operations:

Loads relocatable object (REL) modules

Computes absolute addresses for all local references
within modules

Resolves all unbound global references between
loaded modules

Saves the linked and loaded modules as an
executable file on disk

After the asterisk prompt, type the following line to cause
loading, linking, and saving of the program DEMO/CMD:

*DEMO,DEMD-N-E

19

The first part of the command (DEMO) causes loading of
the program DEMO/REL. The -N switch causes an
executable image of the linked file to be saved on your
disk with the name DEMO/CMD. This occurs after an
automatic search of the BASRUN/REL runtime library. The
file is saved only after a -E switch is entered on the
command line. You may enter as many command lines as
needed before you enter a -E switch. Note that the -E
switch causes an EXIT back to TRSDOS. BASRUN/REL is
automatically searched to satisfy any unbound global
references before linking ends.

c. Wait.

The linking process requires several minutes. During this
time, the following messages will appear on your screen:

DATA (program-start> (program­
end> (bytes>

<free-bytes> BYTES FREE
[(start-address> (program-end>J

This information is described in Chapter 6, "Linking and
Loading."

7. Run your program.

To run the executable program, enter:

DEMO
This causes the runtime module to be loaded. Note that if your
system has only one disk drive, the runtime module must be on the
disk with DEMO/CMD.

Once the runtime module is loaded, execution of the file named
DEMO/CMD begins.

This completes the demonstration run. For more detailed
information, see Chapters 3-9 of this manual.

20

•

-

Editing a Source Program

You must write a BASIC source program with a text editor capable
of creating a text file with a logical record length of 1. The most
convenient is the editor available within the BASIC Interpreter.

The compiler expects its source file in ASCII format. If you edit a
file from within BASIC, you must SAVE it with the ,A option;
otherwise, the interpreter encodes the text of your BASIC program
into special tokens that the compiler cannot read.

BASIC programs you want to compile are, for the most part, written
the same way you write programs to run with the BASIC
Interpreter. However, there are certain language differences
between the BASIC Interpreter and the BASIC Compiler that must
be taken into account when compiling new or existing programs.

One difference is that the compiler supports "metacommands,"
which are not really part of the BASIC language but rather
commands to the compiler itself. The most powerful metacommand
is $INCLUDE, which lets you switch BASIC source files during
compilation. $INCLUDE and the other metacommands are
discussed in Chapter 8.

Another difference is that the interpreter supports a number of
editing and file manipulation commands that are useful mainly
when creating a program. Examples are LOAD, SAVE, LIST, and
EDIT. These are operational commands not supported by the
compiler. Some differences also exist for some of the other
statements and functions. Remember that the editing stage of
program development is when you should account for language
differences. See Chapter 9, "A Compiler/Interpreter Language
Comparison" for a full description of these differences.

The interpreter cannot accept physical lines greater than 254
characters in length. A physical line is the unit of input to the
interpreter. Interpreter logical lines can contain as many physical
lines as desired.

In contrast to the interpreter, the BASIC Compiler accepts logical
lines of up to only 253 characters. If you are using an external
editor, you can create logical lines containing sequences of
physical lines by ending your lines with an underscore. The ·
underscore removes the significance of the carriage return in the
<ENTER> sequence that ends each line (underscore characters
in quoted strings do not count). This results in just a linefeed being
presented to the compiler. The linefeed, <LF>, is the line
continuation character understood by the compiler and the
interpreter. The ASCII key code for a linefeed is Control-J.

Example:

10 IF A=5 THEN PRINT A­
ELSE PRINT B

21

CHAPTER 3

-

-

-

Debugging with the BASIC Interpreter

The easiest way to debug your BASIC source program is to use
the BASIC Interpreter for checking syntax and program logic
errors. Debugging with the interpreter is optional; you can create a
program without ever running it with the interpreter. You may also
edit your program with any general purpose text editor and check
for errors at compile time.

You may use some commands or functions in your compiled
program that execute differently with the interpreter. In those
cases, you need to use the compiler for debugging. Statements
supported by the compiler but riot by tile interpreter are listed in
Chapter 9. The compiler also supports double-precision loop
control variables and transcendental functions; the interpreter
supports neither.

Nevertheless, the language supported by the compiler is intended
to be as similar to that of the BASIC Interpreter as possible. This
lets you make the BASIC Interpreter your prime debugging tool,
saving time by avoiding lengthy compilations and links. Also, the
RUN, CONT, and TRON/TROFF statements make the interpreter a
very powerful interactive debugging tool. See your BASIC
Reference Manual for more information on these statements.

The interpreter stops execution of a program when it encounters
an error. It does not detect any subsequent errors caught until the
first detected error is corrected and the program re-RUN. The
compiler scans all lines and reports all detected errors at compile
time.

23

CHAPTER 4

-

After you debug a BASIC source program, your next step is
compilation.

Compiling

5.1 Command Line Syntax
Unlike the BASIC Interpreter, the compiler is not interactive. It
accepts only a single command line containing filenames and
extensions, appropriate punctuation, optional device designations
and switches. How you place these elements when you enter the
command line determines which processes the compiler performs.
To allow users of single-drive system configurations to use the
compiler, the command line can be separated into two command
lines: one to invoke the compiler and the other to specify
compilation parameters.

BASCOM/GMO may be on a separate disk from the other files.
Once loaded, BASCOM/GMO is no longer needed' on disk.

The general format for the BASIC Compiler command line is:

BASCOM [<objectfile>] [, [<listfile>]] = <sourcefile>

output files input file

where: <objectfile> specifies the name to be assigned to the
relocatable (REL) object file.

<listfile> specifies the name to be assigned to the listing
(LST) file.

<sourcefile> specifies the name of the BASIC (BAS)
source file.

5.2 Using Command Lines
You can specify the following four possible combinations of files on
the compiler command line:

1. Relocatable object file (REL) only.

2. Listing file (LST) only.

3. Both a REL and a LST file.

4. Neither a REL file nor a LST file.

5.2.1 Sample Command Lines
Sample command lines are given below for the four possible file
combinations.

1. To Generate an Object File (REL) Only

The simplest way to create a REL file is to enter the
compiler by typing:

BASCOM (obJectfile>=<sourcefile>

<objectfile> defaults to the default drive (normally :0). This

25

·- CHAPTER 5

-

-

may or may not be the disk on which <sourcefile>
resides. You may give an optional device designation to
either <objectfile> or <sourcefile>.

2. To Generate a Listing File (LST) Only

To create only a listing file, enter the compiler by typing:

BASCOM ,<listfile>=<sourcefile>

The generated <listfile> contains a line-by-line listing of
the BASIC source. If you use the -A compiler switch
described later in this section, the object code generated
for each BASIC statement is disassembled and listed along
with the corresponding BASIC statements in your program.
The actual REL file is not in a human-readable form.

To print out a listing file, enter the command line with the
name of the line printer device (LPT) in place of the listing
filename:

BASCOM , LP T"= < s o u r c e f i 1 e >
When you examine your listing, notice the two hexadecimal
numbers preceding each line of the source program. The
first number is the relative address of the code associated
with that line, using 0 as the start of the program. The
second number is the cumulative data area needed so far
during the compilation. These two columns are totaled at
the end of the listing. The· left column total is the actual size
of the generated REL file in bytes. The right column total is
the total data area required in bytes.

3. To Generate both Object and Listing Files

To generate both object and listing files, enter the compiler
by typing: .

BASCOM <objectfile>,<listfile>=
<sourcefile>

The <objectfile> and <listfile> parameters default to the
default drive. You may add optional device designations at
the end of these parameters.

When your compilation is finished, the following message is
displayed:

xxxxx BYtes Available
xxxxx BYtes Free

xxxxx Warnin~ Error(s)
xxxxx Severe Error(s)

If severe errors occur, correct them and recompile the
program.

4. To Suppress Generation of All Output Files

To perform a syntax check of your <sourcefile>, while
suppressing generation of either an <objectfile> or a

26

-

•

•

-

<listfile>, enter the compiler by typing:

BASCOM =<sourcefile>

or

BASCOM ,=<sourcefile>

In this example, the compiler simply compiles the source
program and reports the number of errors and the number
of free. bytes. This is the fastest way to perform a syntax
check of your program with the compiler Running
program with the interpreter lets you perform an accurate
syntax check only insofar as the language of the BASIC
Interpreter supports the language of the BASIC Compiler.

You may want to create output files on a disk other than the
defaults provided by the compiler, or you may want to create
output files with different extensions or base names than that of
your BASIC source .file. To do so, you must actually specify the
filenames with the desired extensions or device designations, as
described in the following sections.

5.2.2 Filename Extensions
You may append a filename extension of up to three characters to
a filename. These extensions may contain any alphanumeric
character, given in any position. Lowercase letters are converted
to uppercase. Extensions must be preceded by a slash (/).

The BASIC Compiler and L80 recognize certain extensions by
default. If you give your filenames unique extensions, you must
always remember to include the extension as part of the filename
for any filename parameter. When you omit filename extensions,
the Compiler assumes default extensions.

The TRSDOS default filename extensions used with the compiler
are:

Extension

/BAS
/REL
/CMD
/LST
/MAC

Type of File

BASIC source file
Relocatable object file
Executable object file
Listing file
Editor Assembler source file

5.2.3 Device Designations
Each command line field may include device designations that
instruct the compiler where to find files or where to place them.

The disk drive designation is placed after a filename. For example:

DEM0:1

For the input file (the sourcefile), the drive designation indicates
from which device the file is read. For output files (objectfile or
listfile), the drive designation indicates where the files are written.

27

Device names supported under TRSDOS are:

Designation Device

:0, :1, :2, Disk Drives
:3

:LPT Line Printer
:TTY Console

When you omit device names, the default is drive :0 if the .file does
not exist, otherwise it is the lowest drive number containing a file
with the same name.

For example, the following command line:

BASCOM =DEMO:1

directs the compiler to write the object file to drive :0 if DEMO/REL
does not exist. The following output files are written to drive :0, if :0
is the currently logged drive:

BASCOM DEMO,DEMO=DEMO
BASCOM ,DEMO=DEMO

When the compiler has finished, it exits to TRSDOS and the
currently logged drive.

5.2.4 Device Names As Filenames

•

One command line option is to give a device name in place of a
filename. The result of this option depends on which device you e ·
specify, and for which command line parameter. Figure 6.1
illustrates some possibilities:

DEVICE <obiectfile> <listfile> <sourcefile>
:0, :1, writes file writes file NIA (must be
:2, :3 to drive to drive specified in

specified specified its entirety)
LPT NIA writes NIA

(unreadable listing to (output only)
file format) line printer

TTY NIA sends
(unreadable listing to
file format) console

N/ A = Not Allowed

Figure 6.1 Effects of Using Device Designations in Place of File
Names

The BASIC Compiler is not an interactive program. However, use
of device names in place of filenames lets you compile lines input
directly from the keyboard, display lines on the screen as they are
compiled, or print out lines on a printer as they are compiled. For
example:

,TTY (Console) may be entered in place of list filename.

28

,LPT

Example:

DEMO,TTY=DEMO

displays the list file (source and compiled code) for each
line on the screen as it is compiled.

(Lineprinter) may be entered in place of list filename.

Example:

DEMO,LPT=DEMO

prints the list file (source and co111piled code) fo, each
line on the line printer as it is compiled.

5.3 Compiler Switches
In addition to specifying filenames, extensions, and devices to
direct the compiler to produce object and listing files, you can
direct the BASIC Compiler to perform additional or alternate
functions by adding switches to the command line.

You can place switches after source filenames or after other
switches, as in the following command line:

BASCOM FOO.FOO= FOO-D-X

Switches signal special instructions to be used during compilation.
The switch tells the compiler to "switch on" a special function or to
alter a normal compiler function. You may use more than one
switch, but all must begin with a hyphen (-). Do not confuse
these switches with the linker switches, which are discussed in
Chapter 6.

The three types of compiler switches are convention, error­
handling, and special code.

Convention switches let you specify which of two lexical
(language) and execution conventions you want applied
during compilation: version 4.51 or version 5.0. Version 5.0 is
the default. If your programs contain Version 4.51 features,
use the -4 switch.

Error-handling switches let you compile source programs
that contain error-handling routines involving the ON ERROR
GOTO statement plus some form of a RESUME statement.
The two error-handling switches are -E and -X. Error-handling
routines require line numbers in the REL file. If you do not use
one of the error-handling switches, the compiler does not
place line numbers in the REL file. Thus, if a RESUME
statement or ON ERROR GOTO statement is encountered, a
severe compiler error results.

Special code switches cause the compiler to generate
special code for certain uses or situations. Some of these
special code switches cause the compiler to generate larger
and slower code.

Figure 6-2 summarizes the functions of these switches. Following
the figure are detailed descriptions of each switch.

29

--
CATEGORY SWITCH ACTION

Conventions -4 Use 4.51 lexical
conventions.

-T Use 4.51 execution
conventions.

-r--J RP.l~x linP.-n• 1mh0 rinn
constraints (not allowed with
-4).

-5 Use BASIC Version 5.3
convention (default). Use
-4-5 together for BASIC
lexical but Version 5.3
execution conventions. Use
-T-5 together for BASIC
execution but Version 5.3
lexical conventions.

Error-Handling -E Program has ON ERROR
GOTO with RESUME <line
number>.

-X Program has ON ERROR
GOTO with RESUME, -RESUME 0, or RESUME
NEXT.

Special -Z Use Z80 instructions
Code (default).

-I Use only 8080 compatible
instructions in the compiled
code.

-A Include listing of
disassembled object code
in the listing file.

-0 Substitute the BASCOM/REL
runtime library for BASRUN/
REL as the default runtime
library searched by the
linker.

-0 Generate debug code for
runtime error checking.

-S Write quoted strings to REL
file on disk and not to data
area in RAM.

Figure 6-2. Compiler Switches

30

-

5.3.1 Convention Switches
The default convention switch (-5) provides Version 5.0 lexical and
execution conventions. The -4-T switch may be used for Version
4.51 conventions.

Switch Action

-4

-T

Directs the comP.iler to use the lexical conventions of
the version 4.51 BASIC Interpreter. Lexical conventions
are the rules that the compiler uses to recognize the
BASIC language.

The following conventions are observed:

1. Spaces are not significant.

2. Variables with embedded reserved words are
illegal.

3. Variable names are restricted to two significant
characters.

The -4 switch forces correct compilation of a source
program in which spaces do not delimit reserved
words, as in the following statement.

FOAi = ATOBSTEPC

With the -5 switch, the compiler assigns the variable
"ATOBSTEPC" to the variable "FOAi" With the -4
switch set, the compiler recognizes the line as a FOR
statement.

Note: The -4 and -N switches may not be used
together.

Tells the compiler to use BASIC version 4.51 execution
conventions. Execution conventions refer to the
implementation of BASIC functions and commands
and what they actually do at runtime.

With -T specified, the following 4.51 execution
conventions are used:

i. FOR/NEXT loops are always executed at least one
time.

2. TAB, SPC, POS, and LPOS perform according to
version 4.51 conventions.

3. Automatic floating-point to integer conversions use
truncation instead of rounding, except when a
floating-point number is being converted to an
integer in an INPUT statement.

4. The INPUT statement leaves the variables in the
input list unchanged if only a carriage return is
entered. If a "?Redo from start" message is issued,
then a valid input list must be given. A carriage
return in this case generates another "?Redo from
start" message.

31

-5 Tells the compiler to use BASIC Version 5.3 execution --·. and lexical conventions. This switch is the default
convention.

1. Variable names may be a maximum of 40 characters,
with all 40 characters significant. You may use
letters, numbers, and the decimal point in variable
names, but the name must begin with a letter.

Variable names may also include embedded·
reserved words. Reserved words include all BASIC
commands, statements, function names, and
operator names.

2. FOR ... NEXT loops are not executed if the final
value is less than the initial value and the increment
is positive.

3. The INPUT statement changes the variables in the
input list to the null string or zero if you only press
(ENTER).

-N Tells the compiler to relax line numbering constraints.
When you specify -N, line numbers in your source file
may be in any order, or they may be eliminated
entirely. With -N, lines are compiled normally, but
unnumbered lines cannot be targets for GOTOs or
GOSUBs. While -N is set, the underline character -causes the remainder of the physical line to be
ignored. In addition, -N causes the underline character
to act as a line feed so that the next physical line
becomes a continuation of the current logical line. (See.
Chapter 3 for more information on physical and logical
lines.)

The -N switch provides three advantages:

1. Elimination of line numbers increases program
readability.

2. The BASIC Compiler optimizes over entire blocks of
code rather than single lines (for example in
FOR ... NEXT loops.)

3. BASIC source code can more easily be included in
a file with $INCLUDE.

Remember that -N and -4 may not be used together.

5.3.2 Error-Handling Switches
The error-handling switches let you use ON ERROR GOTO
statements in your program. These statements can aid you greatly
in debugging your BASIC programs. However, extra code is

.. generated by the compiler to handle ON ERROR GOTO
statements. -. /

32

/. Switch Action -- -E Tells the compiler that the program contains an ON
ERROR GOTO/RESUME <line number> construction.
To handle ON ERROR GOTO properly, the compiler
must generate extra code for the GOSUB and
RETURN statements. Yoy must include a line number
address table (one entry per line number) in the REL
file so that each runtime error message includes the
number of the line in which the error occurs. To save
memory space a, id executior I ti111e, do not use this
switch unless your program contains an ON ERROR
GOTO statement.

Note: The only RESUME statement that works properly
with-Eis RESUME <line number>. If your program
uses RESUME, RESUME NEXT, or RESUME 0 with an
ON ERROR GOTO statement, use the -X switch
instead.

-X Tells the BASIC Compiler that the program contains
one or more RESUME, RESUME NEXT, or RESUME 0
statements.

The -X switch performs all the functions of the -E
switch, so you never need to use the two at the same
time. For instance, the -X switch, like the -E switch,

.·e causes a line number address table to be included in
your object file so that each runtime error message
includes the number of the line in which the error
occurs. With -X, however, the line number address
table contains one entry per statement; with -E, the
table contains one entry per line number.

In order that RESUME statements may be handled
properly, the compiler cannot optimize across
statements. Therefore, do not use -X unless your
program contains RESUME statements other than
RESUME <line number>.

5.3.3 Special Code Switches
The special code switches are:

Switch Action

-Z Tells the compiler to use Z80 instructions whenever
possible. This switch is the default mode. When the -Z
switch is set, several additional Z80 instructions are
allowed in addition to the 8080 compatible instructions
normally generated by the compiler.

-I Tells the compiler to use 8080 compatible instructions,
rather than 280 instructions. The object code is still
listed using Z80 instructions, however.

- -A Includes the disassembled object code for each
source line in the source listing file.

33

-0 Tells the compiler to substitute the BASCOM/REL -~,

runtime library for BASRUN/REL as the default runtime
l

library searched by the linker. When you use this
switch, you cannot use the runtime module.

Note: CMO files created by linking to BASCOM/REL
do not need the runtime module on disk at runtime.

-0 Generates debugging and error handling code at
runtime. Use of -D lets you use TRON and TROFF in
the compiled file. Without -D set, TRON and TROFF
are ignored.

With -D, the BASIC Compiler generates somewhat
larger and slower code that performs the following
checks:

1. Arithmetic overflow. All arithmetic operations, both
integer and floating-point, are checked for overflow
and underflow.

2. Array bounds. All array references are checked to
see if the subscripts are within the bounds
specified in the DIM statement.

3. Line numbers. The generated binary code includes
line numbers so that the runtime error listing can
indicate the line on which an error occurs.

4. RETURN. Each RETURN statement is checked for -a prior GOSUB statement.

If the -D switch is not set, array bound errors, RETURN
without GOSUB errors, and arithmetic overflow errors
do not generate error messages at compile time. At
runtime, no error messages are generated either, and
erroneous program execution may result. Use the -D
switch to make sure that you have thoroughly
debugged your program.

-S The -S switch forces the compiler to write quoted
strings that are longer than 4 characters to your REL
file on disk as they are encountered, rather than
retaining them in memory during the compilation of
your program. If this switch is not set, and your
program contains a large number of long quoted
strings, you may run out of memory at compile time.

Although the -S switch allows programs with many
quoted strings to take up less memory at compile time,
it may increase the amount of memory needed in the
runtime environment, since multiple instances of
identical strings will exist in your program. Without -S,
references to multiple identical strings are combined
so that only one instance of the string is necessary in
your final compiled program. -

34

CHAPTER 6

-

Linking and Loading

A linking loader performs two important programming functions.
First, it loads into memory one or more program files you select.
The files that L80 loads are called REL files. REL files are created
during the compilation process and contain relocatable machine
code. A REL file is not an executable file. Converting a REL file
into an executable object file, a process known as linking, is the
second function of the linking loader. Specifically, the linking
loader (L80) searches the REL file (or files, if more than one has
been loaded) for all references to subroutines needed to perform
BASIC or otl 1er fur 1ctior 1s such as floating point addition, printing
data, and so on.

Some of the subroutines that are needed are in BASRUN/CMD, the
runtime module, which will be brought into memory just prior to
execution of your program. Others, the less commonly used
subroutines, are in BASRUN/REL, the subroutine library. For each
BASIC function, there is either a complete subroutine (or series of

· subroutines) stored in BASRUN/REL or there is a reference to a
subroutine stored in the runtime module.

L80 searches BASRUN/REL to satisfy undefined globals. If the
subroutine needed is stored in BASRUN/REL, L80 links that
subroutine to the loaded program(s). If the required subroutine is
stored in the runtime module, L80 sets up the code necessary for
the program to find the subroutine.

The final action of the linking loader, if the programmer requests it,
_is to save the loaded program(s) and the linked routines in a single
executable disk file. This file is automatically given the extension
/CMD, unless you specify otherwise.

In addition to these basic link/loading functions, L80 can load and
link assembly language subroutines written with the Editor
Assembler or FORTRAN Compiler, both available as separate
products. L80 also lets you control where program and data areas
are placed.

6.1 Linker Command Lines
A simple linker command line might look like this on your screen:

L80

*PROG/CMD-N,PROG/REL-E

The asterisk (*) is the L80 prompt. PROG/CMD is the nar:ne of the
executable file to be created; it is followed by the names of the
REL files to be linked. Note: Linker switches have no relation to the
compiler switches discussed in the preceding chapter.

If you want default filename extensions, you need not include them
in the command line:

L80

- *PROG-N,PROG-E

35

You can type both parts of the command line on the same line. For -~
example, the following command performs the same functions as
the preceding example:

L80 PROG-N,PROG-E

In any of the above examples, the -N switch indicates that an
executable file is to be created, and the -E switch tells the linker to
exit to TRSDOS and store the executable file on disk. Before
exiting, the linker automatically searches BASRUN/REL on the
currently logged drive for any as yet undefined global references.
(To search BASCOM/REL instead, use the -0 compiler switch; see
section 6.2.) The final linked executable file has the name
specified by your <filename>-N command. Note: The -N switch is
essential if you want to create an executable file.

You must specify the name of the file to store on disk. If you do
not, no executable file is stored.

Linker switches are discussed in detail in Section 6.4.

To link an assembly language subroutine to your BASIC program,
you can type, for example:

L80

*PROG,MYASM,PROG-N-E

In this case, MYASM/REL is the name of the assembly language
subroutine, and PROG/REL is the name of your program. The - \
subroutine MYASM/REL cannot be assembled with an END
<label> statement. The linker assumes that <label> is the start
address of a separate program, and the linker refuses to link two
programs together because their two separate start addresses will
conflict.

When you link a REL file to BASRUN/REL, the BCLOAO/L80 file
must be on disk in the currently logged drive. If it is not. your
screen displays the following error message:

?BCLOAD not found, Please create
header file

More information about BCLOAO/L80 is in Section 6.3.

When your linking session is complete, your screen displays the
following message:

DATA (prolra1r1-start> (pro1ra1r1-end>
(bytes>

(free-bytes> BYTES FREE
[(start-address> (pro1ra1r1-end>J

1. <program-start> is the hexadecimal address of the
beginning of your program.

2. <program-end> is the hexadecimal address of the end of -
your program.

36

-

3. <bytes> is the decimal size of your program in bytes.

4. <free-bytes> is the decimal size of unused memory in bytes
during linking.

5. <start-address> is the hexadecimal start address of your
program (not necessarily the same as <program-start>).

Parameters 1, 2, 3, and 5 are referenced by number in Figure 6.1,
which shows the link data map for a program linked to BASRUN/
REL and using the runtime module. If you link to BASCOM/REL
and use the -P and -0 linker switcl 1es, so111e of ti ,is i11fot111atio11 is
not accurate (see Section 6.4 for details on linker switches).

Memory
Top

2.

5.

1.

Bottom
of

Memory

Rest of Memory

Extra Runtime Code & Data

User Program Code

User Program Data

COMMON

RUNTIME MODULE

TRSDOS

Figure 6.1 Link Data Map

3

For programs linked to BASRUN/REL and using the runtime
module, the size of the executable program (CMD file) in bytes is
roughly equal to:

<program-end> - <start-address>*1.01

Remember that at runtime the runtime module resides in memory
along with your executable file. When execution of your program
begins, the first step is to load the runtime module to establish the
runtime support environment.

6.2 Runtime Support
Once you compile a REL file, you must link your program to
modules that contain runtime support routines. Runtime support is
the body of routines that, in essence, implement the BASIC
language. Your compiled REL file, on the other hand, implements
the particular algorithm that makes your program a unique BASIC
program.

Runtime support is essential to the execution of all compiled
BASIC programs. It is found in the runtime module and the runtime
library. As a rule, only a portion of all possible runtime routines is
linked to your REL file.

37

The time required for linking all the necessary runtime support
routines is often a problem on microcomputers. Partly for this
reason, the runtime module contains all of the more frequently
used routines in one module. Since they all reside in one module,
they are all linked at once and need not be searched for in later
linker searches. The runtime module is automatically linked to
every program via a dummy module in BASRUN/REL; it is not
present in memory at linktime. (Thus, any program is at least 16K
long at runtime.) If your program needs other less frequently used
routines, these routines are automatically searched for and found
in BASRUN/REL. At linktime, you cannot use the -P and -0 linker
switches, since they will cause errors at runtime. Note: The runtime
module must be accessible on disk when the CMO file is
executed.

When you specify the -0 switch at compiletime, the alternate
runtime library (BASCOM/REL) is substituted for BASRUN/REL as
the default library to be searched at linktime. At linktime you can
then use -P and -0 as described in Section 6.4. Note: When
BASCOM/REL is selected as the library to be searched, the
runtime module is not used by your program at all.

There are some advantages to using the BASCOM/REL runtime:

1. For small, simple programs you may be able to compile
and link programs smaller than the 21 K minimum required
to accommodate the BASRUN/CMO module. This can be
important in compiling a program for a ROM-based
application, where space is a critical factor.

2. Execution of a compiled and linked CMO file does not
require that the runtime module be on disk at runtime.

There are, however, some distinct advantages to using the
BASRUN/CM0 runtime module:

1. You can use COMMON and CHAIN statements to support
a system of programs sharing common data. With
BASCOM/REL, COMMON is not supported and CHAIN is
semantically equivalent to RUN.

2. With BASRUN/CMO the CLEAR command is implemented;
it is not implemented with BASCOM/REL.

3. The RUN <linenumber> option to RUN is implemented
with BASRUN/CMO; it is not implemented with BASCOM/
REL.

4. When BASRUN/CMO is used, the linker can load programs
approximately 12K larger than when BASCOM/REL is
used. In addition, linktime is reduced, since unbound
globals do not have to be searched for in multiple library
modules.

-"' ·.1
/

-) /

5. The routines in BASRUN/CMO are not incorporated into the
executable file. This can save approximately 16K of disk
space per executable file; it also results in slightly faster e.
CHAINing.

38

\.

i --'-.

-

For more information on using CHAIN and COMMON with a
system of programs, see Appendix A.

6.3 The BCLOAD File
Because of the way the BASIC runtime environment is
implemented with the runtime module, the file BCLOAO/L80 must
be on one of the disk drives at linktime.

BCLOAD/L80 contains two pieces of information- the hexadecimal
load address of your program, and the filename of the runtime
module.

BCLOAD/L80 looks like this if you LIST it out:

+8300 [pro~raM load address]
6ASRUN/CMD [filenaMe of the

runtiMe Module]

At runtime, you must have the runtime module in the disk drive
specified in the BCLOAD/L80 file, or an error is generated. The
default location of the runtime module is the currently logged drive.
With any available text editor, you can alter BCLOAD/L80, before
linktime, to specify the disk on which you want the runtime module
to reside at runtime.

The plus sign (+) tells the linker to write the CMD file beginning at
the start address of your program instead of at the program load
address. (The start address is the address at which your program
begins execution.)

6.4 Linker Switches
As with the BASIC Compiler, you can use switches with L80 to
specify certain functions. Unlike compiler switches, however, L80
command line switches are not always placed at the end of the
command line. Most are placed at the end of the command line,
but some must be placed at the beginning, and some in the
middle.

Table 6.1 lists the switches available with L80. Do not confuse
these switches with the compiler switches.

39

Table 6.1. Linker Switches

CATEGORY SWITCH ACTION
Exit -E Exit to TRS0OS

Save -N Save ail previously loaded
programs and subroutines using
the name immediately preceding -N

-
-1'1.i MILtm1are rorrr1 u, -1'-1, save u111y

program area

Address -P Set start address for programs and
Setting data. If used with -0, -P sets only

the program start

-0 Set start address for data area only

-R Reset LS©

Library -S Search the library named
Search immediately preceding -S

Global -U List undefined globals and program
Listing and data area information

(a direct command)

-M List complete global reference map

Radix -0 Octal radix
Setting -H Reset to hexadecimal radix

(default)

Two switches are used in every linking session. These are the
switches in the first two categories - Exit and Save.

6.4.1 Exit Switches
Switch Action

-E Causes LS© to execute and then causes program
control to Exit from LS© and return to TRS0OS
command level. Every link loading command line
should end with the -E switch. Although it is possible
to exit LS© in other ways (press <BREAK> when at
LS© command level), the -N switch has no effect until
LS© sees the -E switch.

6.4.2 Save Switch
Switch Action

-N Saves a memory image of the executable file on disk,
using the filename and extension you specify. If you do
not specify an extension, the default extension for the·
saved file is /CM0. Unless the command line contains
this switch, no memory image of the linked file is
saved on disk. Therefore, you use this switch almost

40

-·\ . I
I

-

\ -,'""'

-

every time you link a REL file. To specify which drive
contains the diskette for saving the memory image,
insert the drive number (:d) between the filename and
-N.

The -N switch must immediately follow the filename of
each file you wish to save, and it does not take effect
unless a -E switch follows it. Once the file is saved on
disk, you need only type BASRUN filename at TRSOOS
command level to run the program.

The default condition of saving an executable file is to
save both program and data areas. If you wish to save
only the program to make your disk files smaller, use
the -N switch in the form -N:P. With this switch set,
only the program code is saved. Do not use this -N:P
feature if you compiled your program with the -S
switch.

These two switches are all that are required in most
LS© operations. Some additional functions are
available through the use of other switches that let you
manipulate the LS© processes in more detail.' The
switches that turn on these additional functions are
arranged in categories according to type of function.
The function of each category is defined by the
category name.

6.4.3 Address Setting Switches
Switch

-P

-0

Action

Sets both the program and data origin. The format of
the -P switch is

-P:<address>

The address value must be expressed in the current
radix. The default radix is hexadecimal. You will know
if the radix is set for a base other than hexadecimal
because the radix can only be changed by giving a
switch in the LS© command line.

The default value for the -P switch is :30©0.

You may use this switch to set program and data
origin higher to make room for small machine
language subroutines, as described in Section 0.2.

Sets the data area origin by itself. Since the program
origin always starts exactly at the end of the data area,
unless otherwise specified, the -0 switch used by itself
has the exact same effect as the -P switch used by
itself. The syntax for the -0 switch is the same as for
the -P switch:

-0:<address>

The address for the -0 switch must be in the current
radix. (Hexadecimal is the default radix.)

41

When you use the -P switch with the -D switch, data -
areas load starting at the address given with the -D
switch. (The program loads beginning at the program
origin given with the -P switch.) This is the only
occasion when the address given in -P: is the start
address for the actual program code.

The -D switch, like the -P switch, takes effect as soon
as L80 "sees" the switch (the effect is not deferred
until linking is finished), but ti 1e -D switcl I I ,as 110 effect
on programs already loaded. Therefore, it is important
to place the -D switch (as well as the -P switch) before
the data (and programs) you want to load at the
address specified.

You must separate the -P switch and -D switch from
the REL filename with a comma. For example,

L80 -P:5600,DEMO,DEMO-N-E

Additional Note for -P and -D Switches

If your program was compiled with the -0 switch and is too large
for the linking loader, you may be able to load it anyway if you use
-D and -P together. This way you can load programs and data of
approximately 27K to 30K, depending on the number of global
symbols.

While L80 is loading and linking, it builds a table consisting of five e,
bytes for each program relative reference. If you use the -D, -E, or
-X switch, this table contains at least five bytes for every line
number. By setting both -D and -P, you eliminate the need for L80
to build this table, thus giving you some extra memory.

The .,o and -P switches should not be used for programs using the
runtime module.

To set the two switches, look at the end of the LPT file listing. Take
the number for the total of data, add that number to 3000H, add
another 100H + 1, and the result should be the -P: address for the
start of the program area. The -D switch should be set to -D:3000.

-R Resets L80 to its initialized condition. L80 scans the
command line before it begins the functions
commanded. As soon as L80 sees the -R switch, all
files loaded are ignored, L80 resets itself, and the
asterisk (*) prompt is returned, showing that L80 is
running and waiting for you to enter a command line.

The version of L80 supplied with the BASIC Compiler
defaults the initial load address to 3000H. The default
save file extension is CMD.

6.4.4 Library Search Switch
Switch

-S

Action

Causes L80 to search the file named immediately prior
to the switch for routines, subroutines, definitions for

42

re
\

-

globals, and so on. In a .command line, the filename
with the -S switch appended must be separated from
the rest of the command line by commas.

The -S switch is used to search library files only, such
as BASCOM or FORLIB.

You rarely need to give the -S switch. Only under the
following conditions is it required:

1. Use BASCOM S if you have only one drive (see
steps for Running L80 given above).

2. Use FORLIB-S to search the FORTRAN runtime
library if one or more of the programs you are link
loading is a FORTRAN program.

Example: SAMPLE/FOR -N
SAMPLE/REL, FORLIB-S

The extensions are optional.

6.4.5 Global Listing Switches
Switch

-U

-M

Action

Tells L80 to list all undefined globals, to the point in
the link session when L80 encounters the -U switch.
Although this switch is not a default setting, if your
program contains any undefined globals, they are
listed automatically, just as if you had set the -U
switch. If your program contains no undefined globals,
the actions controlled by the -U switch do not occur
unless -U is given in a command line that does not
end with a -E switch. Globals are the names of
assembly language subroutines that are called from
the REL file. If L80 cannot find the routine, the global is
undefined. Unless you have written some of your own
subroutines and have directed L80 to load and link
them with your compiled program, you should have no
need to use this switch. BASRUN provides definitions
for the globals you need to run your program.

In addition to listing undefined globals, the -U switch
directs L80 to list the origin and the end of the
program and data areas. However, the program
portion of the information is listed only if the -D switch
was also given If the -D switch was not given also, the
program is stored in the data area, and the origin and
end of the data area include the origin and end of the
program.

Displays (lists) all globals, both defined and undefined,
on the screen. The listing cannot be sent to a printer.
In the listing, defined globals are followed by their
values, and undefined globals are followed by an
asterisk (*).

43

Both the -M switch and the -U switch list the program -~
and data area information.

6.4.6 Radix Setting Switches
Switch Action

-0 Sets the current radix to Octal. If you have a reason to
use octal values in your program, give the -0 switch in
the command line

-H Resets the current radix to Hexadecimal. Hexadecimal
is the default radix. You do not need to give this switch
in the command line unless you previously gave the -0
switch and now want to return to hexadecimal.

44

-\

•

re
CHAPTER 7

(-\

-\
'·

·•. (.,
\.

-

Running a Program

To run a compiled program, simply enter the filename without its
CMD filename extension. For example:

DEMO
This command causes execution of the program DEMO/GMO. If
the program has been linked with the BASRUN/REL runtime library,
the runtime module must be accessible from disk at runtime.

The executable binary file can also be executed from within a
program, as in the following statement:

10 RUN "PROG"

The default extension is /CMD. The CMD file can be a binary file
created in any programming language. The CHAIN command is
used in a similar fashion. In either case, an executable binary file
is loaded. The runtime module is not reloaded when you use
CHAIN; it is when you use RUN.

It is important to realize that the bulk of the runtime environment is
taken up by the runtime module. This module is automatically
loaded when you initially invoke an executable file requiring the
runtime module. When you RUN a program, the executable file is
loaded into memory. The runtime module is also loaded to create a
fresh runtime environment. Both files reside in memory
simultaneously.

45

·- CHAPTER 8

{-\..

(.

\ __

-

Metacommands

Metacommands are compiler directives that provide two
capabilities: source file control and listing file control. The available
metacommands are listed in Table 8.1.

Table 8.1 The Metacommands

Default
Name (+ /-) Description

$INCLUDE:' <filename>'

$LIST+

$OCODE+

$TITLE:' <text>'
$SUBTITLE:· <text>'
$LINESIZE:n

$PAGESIZE:n

$PAGE

$PAGEIF:n

$SKIP:n

+=on
- = off

Switches compilation from
current source file to source
aiven bv <filename>.
Turns on or off source listing.
Errors are always listed.
Turns on or off disassembled
object code listing.

Sets paqe title.
Sets paqe subtitle.
Sets width of listing. Default is
80.
Sets length of listing in lines.
Default is 66; 60 are orintable.
Skips to next page. Line number
is reset.
Skips to next page if less than
(n) lines left.
Skips (n) lines or to end of oaae.

You can give one or more metacommands at the start of a
comment. Multiple metacommands are separated by whitespace
characters: space, tab, or linefeed. Whitespace between the
elements of a metacommand is ignored. Therefore, the following
metacommands are equivalent:

REM $PAGE:12
REM $PAGE : 12

Note: Do not space between the dollar sign and the rest of the
metacommand.

To disable metacommands within comments, place a character
that is not a tab or space before the first dollar sign. For example:

REM x$PAGE:12

Except for $INCLUDE, the metacommands affect the source listing
only. Many commands can be turned on and off within a listing.
For example, most of a program might use $OCODE-, with a few
sections using $OCODE + as needed. However, some

47

8.1 Syntax

metacommands, because of their nature, apply to an entire
compilation.

In the metacommands listed in Section 8.2, the following rules
apply:

8.2 Descriptions

1. A metacommand followed by plus (+) or minus (-) is an
on/off switch.

2. The plus (+) or minus (-) given in the heading for each
desc1iptio11 of a11 on/off switch is the default setting of the
given metacommand.

3. A metacommand followed by :n requires an integer (0 < n
< 256).

4. A metacommand followed by :'<text>' requires a string.

The metacommands available with the BASIC Compiler are:

8.2.1 $1NCLUDE:'<filename>'
Lets the compiler switch processing of a source file from the
current source to the BASIC file given by the <filename>
parameter. When the end of file is reached in the included source,
the compiler switches back to the original source and continues
compilation. Resumption of compilation in the original source file --
begins with the line of source text that follows the line in which the
$INCLUDE occurred. Therefore, REM $INCLUDE should always be
the last statement on a line, since the remainder of the line is
always treated as part of a comment.

$1NCLUDEd BASIC source files may be subroutines, single lines,
or any type of partial program. Note: You must enclose
<filename> in single quotes; the default extension is /BAS.

Be sure that any variables in the included files match their
counterparts in the main program and that included lines do not
contain GOTOs to nonexistent lines, END statements, or similarly
erroneous code.

These further restrictions must be observed:

1. You must SAVE included files with the ,A option if they
were created from within the BASIC Interpreter.

2. Included lines must be in ascending order.

3. The lowest line number of the included lines must be
higher than the line number of the $INCLUDE
metacommand in the main program.

4. The range of line numbers in the included file must
numerically precede subsequent line numbers in the main
program. ·

These restrictions do not apply if the main program is
compiled with the -N switch set, since line numbers need

48

e.

;:-a. •••

;, ·• \'·.

-

not be in ascending order in this case. For more
information, see Section 5.3, "Compiler Switches."

5. You cannot nest $INCLUDE metacommands inside other
include files. This means that you can use $INCLUDE only
in the file containing your main BASIC program; a
$INCLUDE metacommand cannot appear inside the
included source file.

6. The $INCLUDE directive must be the last statement on a
line and must be part of a comment statement, as in the
following statement:

999 DEFINT I-N: REM $INCLUDE:"COMMON/BAS"

All other metacommands are designed to control the source listing.
Note, however, that none of the metacommands listed below have
any effect if NUULPT is the name of the source listing file.

8.2.2 $LIST+
Turns on the source listing; $LIST- turns it off. Metacommands
themselves appear in the listing, except for $LIST-. The format of
the listing file is described in Appendix 8, "Listing File Format."

8.2.3 $0CODE +
Controls listing of the generated code in the listing file. For each
BASIC source line, code addresses and operation mnemonics are

. listed. Note that $OCODE- turns off listing of the generated code,
even if the -A switch is used when you enter the compiler.
$OCODE + turns on the generated code listing, regardless of the
use of -A.

8.2.4 $TITLE:'<text>'
Sets the name of a title that appears at the top of each page of the
source listing. The string <text> must be fewer than 60
characters.

8.2.5 $SUBTITLE:'<text>'
Sets the name of a subtitle that appears beneath the title at the top
of each page of the source listing. The string <text> must be
fewer than 60 characters.

8.2.6 $LINESIZE:n
Sets the maximum length of lines in the listing file. This value
defaults to 80. The number of characters printed per line is (n - 1).
The integer n must be greater than 40.

8.2.7 $PAGESIZE:n
Sets the maximum size of a page in the source listing. The default
is 66. To allow space for the page header, a page has (n-6) lines
printed on it. The integer n must be greater than 16.

49

8.2.8 $PAGE
Forces a new page in the source listing. The page number of the
listing file is automatically incremented.

8.2.9 $PAGEIF:n
Conditionally performs $PAGE, above, if there are fewer than n
printed lines left on the page. If n or more lines are left on the
page, no action is taken.

8.2.10 $SKIP:n
Skips n lines in the source listing file. If fewer than n lines are left
on the current page, the listing skips to the start of the next page.

50

-

(-
CHAPTER 9

f--\

.· .
:_ :A -

A Compiler/Interpreter
Language Comparison

You must be aware of the differences between the languages
supported by the BASIC Compiler and the BASIC Interpreter when
compiling existing or new BASIC programs. For this reason we
recommend that you first compile the demonstration program in
Chapter 2, then read Chapters 3-9, and only then begin compiling
other programs.

The differences fall into three main categories: operational,
-----"la.:.___n=g=ua"-'g"'----e, and others. The lists on the next page serve as a

reference guide to these differences, with detailed discussion
follow_ing.

-

All commands and functions except the metacommands and
commands specific to BASIC are also described in the BASIC
Reference Manual. We suggest that for a complete understanding
of a command or function, you read the information in the BASIC
Reference Manual, then see this chapter for specific differences
between the interpreter and compiler implementations.

9.1 Operational Differences
BASIC Interpreter operational commands are not acceptable as
input to the compiler. These include:

AUTO
CLOAD
CONT
CSAVE
DELETE
EDIT
ERASE
LIST
LUST
LOAD
MERGE
NEW
RENUM
SAVE
SOUND

9.2 Language Differences
Most programs that run under the BASIC Interpreter compile under
the BASIC Compiler with little or no change. However, it is
necessary to note differences in the following commands:

CALL
CHAIN
CLEAR
COMMON
DEFxxx
DIM
END
FOR/NEXT

51

FRE
MEM
ON ERROR GOTO
REM
RESUME
RETURN
RUN
STOP
TRON/TROFF

WHILE/WEND
WIDTH

The differences in the interpreter/compiler implementations of
these commands and statements are described below.

9.2.1 CALL
The CALL statement lets you call and transfer program control to a
precompiled FORTRAN subroutine or to an assembly language
routine created with the Editor Assembler.

The format of the CALL statement is:

CALL <global-name> [(<argument-list>) ...]

<global-name> is the name of the subroutine you wish to
call. This name must be 1 to 6 characters long and must be
recognized by LB© as a global symbol. That is, <global- A-,_,
name> must be the name of the subroutine in a FORTRAN W
SUBROUTINE statement or a PUBLIC symbol in an assembly
language routine.

<argument-list> is optional. It contains arguments that are
passed to an assembly language or FORTRAN subroutine.

Note: It is the responsibility of the assembly language procedure
to preserve the values in the registers at the point where the
procedure was invoked.

Further information on assembly language subroutines is in the
discussion of the USR function that follows. For more information
on creating and interfacing assembly language routines, see
Appendix D.

Example:

120 CALL MYSUBR (I ,J ,K)

Note: If you do not have FORTRAN, you can only use the CALL
statement with assembly language subroutines.

9.2.2 CHAIN
The BASIC Compiler does not support the ALL, MERGE, DELETE,
and <line number> options to CHAIN. If you wish to pass
variables, we recommend that you use the COMMON statement. A
Note: Files are left open during CHAINing. W.

52

The default filename extension is /CMD. BASIC compiler programs
can chain to any CMD file; however, they do not pass any
command line information.

See Appendix A for examples of programs using CHAIN.

9.2.3 CLEAR
The BASIC Compiler supports the CLEAR command. The format is:

CLEAR [. <expression 1 > [, <expression2>]]

(_. ,.

<expression1 > and <express1on2> mustoeTnteger---------
expressions. If specified, the first expression sets the highest
memory location available at compile time. If specified, the
second expression sets the number of bytes available for the
stack during compilation.

If a value of 0 is given for either expression, the appropriate
default is used. The default stack size is 256 bytes, and the
default top of memory is the current top of memory.

Note: CLEAR is supported only for programs using the runtime
module and not for programs linked to the BASCOM/REL runtime

· library.

The CLEAR statement performs the following actions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Resets all numeric variables and arrays to zero
Resets all string variables and arrays to null
Releases all disk buffers

See Appendix C for a memory map showing the location of the
stack, string space, and disk buffers discussed above.

The compiler's CLEAR statement does not clear DEFxxx
statements, as does the interpreter's. For the compiler, these
declarations are fixed at compiletime and may not vary.

9.2.4 COMMON
The BASIC Compiler supports a modified version of the COMMON
statement. COMMON must appear in a program before any
executable statement. All statements are executable except:

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
$Metacommands

You must declare arrays in COMMON in preceding DIM
statements, and array names must have parentheses when used in
COMMON. For example:

COMMON A () ,B$ () ,C ()

53

The standard form of the COMMON statement is referred to as _,)
"blank" COMMON. FORTRAN-style "named" COMMON areas are
also supported; however, the named COMMON variables are not
preserved across CHAINs.

The format for named COMMON is:

COMMON /<name>/ <list of variables>

where: <name> is 1 to 6 alphanumeric characters, starting with
a letter. Tllis is useful for commur1icating with FORTRAN
and assembly language routines without having to
explicitly pass parameters in the CALL statement.

Blank COMMON is used for passing variables between programs.
It is named blank COMMON because COMMON regions are not
specified. For blank COMMON statements communicating
between CHAINing and CHAINed-to programs, the order of the
variables must be the same in both programs if the sizes of blank
COMMON are different.

To ensure that COMMON areas can be shared between programs,
place blank COMMON declarations in a single include file and use
the $INCLUDE statement in each program. For example:

MENU/BAS

10 ' $INCLUDE: 'COMDEF'

1000 CHAIN "PROG1"

PROG1/6AS

10 '$INCLUDE: 'COMDEF'

2000 CHAIN "MENU"

COMDEF/6AS

100 DIM A(100) ,6$(200)
110 COMMON I,J,K,A()
120 COMMON A$,6$() ,H ,Y ,Z
130 REM END COMDEF/6AS

Note: COMMON is not supported by the BASCOM/REL runtime
library. Therefore, do not compile programs with the -0 switch if
they contain COMMON statements.

9.2.5 DEFINT/SNG/DBUSTR
DEFxxx statements designate the storage class and data type of
variables listed as parameters.

54

-

(···-

The compiler does not "execute" DEFxxx statements, as it does
PRINT statements, for example. A DEFxxx statement takes effect
as soon as it is encountered in your program during compilation.
Once the type is defined for the listed variables, that type remains
in effect until the end of the program or until another DEFxxx
statement alters the type of the variable. Unlike the interpreter, the
compiler cannot circumvent the DEFxxx statement by directing
flow of control around it with a GOTO. For variables given with a
precision designator (i.e., %, !, #, as in A%= B), the type is not
affected by the DEFxxx statement.

At compile time, the compiler allocates memory for storage of
designated variables and assigns them one of the following data
types:

INTeger,
SiNGle precision floating-point,
DouBLe precision floating-point, or
STRing.

9.2.6 DIM
The DIM statement is similar to the DEFxxx statement in that it is
scanned rather than executed. That is, DIM takes effect when it is
encountered at compile time and remains in effect until the end of
the program; it cannot be reexecuted at runtime.

If the default dimension (10) is already established for an array
variable, and that variable is later encountered in a DIM statement,
an "Array Already Dimensioned" error results. Therefore, the
practice of putting a collection of DIM statements in a subroutine
at the end of your program generates severe errors. In that case,
the compiler sees the DIM statement only after it has already
assigned the default dimension to arrays declared earlier in the
program.

The values of the subscripts in a DIM statement must be integer
constants; they may not be variables, arithmetic expressions, or
floating-point values.

9.2.7 END
During execution of a compiled program, an END statement closes
files and returns control to the operating system. The compiler
assumes an END statement at the end of the program, so "running
off the end" (omitting an END statement at the end of the program)
produces proper program termination by default.

9.2.8 FOR/NEXT
You can use double precision FOR/NEXT loops with the compiler.
All FOR/NEXT loops must be statically nested ; that is, each FOR
must have a single corresponding NEXT. Static nesting also means
that each FOR/NEXT pair must reside within an outer FOR/NEXT
pair. Therefore, the following construction is not allowed:

55

10 FOR I=1 TD 10
20 FOR J=1 TD 10
30 FOR K=1 TO 10

70 NEXT J
80 NEXT K

The following form is correct:

10 FOR I=1 TD 10
20 FDR J=1 TD 10
30 FOR K=1 TD 10

70 NEXT K
80 NEXT J
90 NEXT I

In addition, do not direct program flow into a FOR/NEXT loop with
a GOTO statement. The result of such a jump is undefined, as in
the following example:

50 GOTO 100

90 FOR I=1 TD 10

100 PRINT "INLO• P"

200 NEXT I

9.2.9 FRE
The compiler supports two versions of the FRE statement, one with
a numeric argument and the other with a string argument.

Examples:

Y = FRE (X)
Y = FRE (S$)

FRE with a numeric argument always returns zero (0).

•

FRE with a string argument causes string space to be compacted
so that the free string space is not fragmented. Then FRE returns
size of this single block of string space. -

56

•

/-\ .

-

9.2.10 MEM
In the BASIC Interpreter, MEM returns the amount of free space in
memory. In the compiler, it always returns zero (0).

9.2.11 ON ERROR GOTO
If a program contains ON ERROR GOTO and RESUME
<linenumber> statements, you must include the -E compilation
switch in the compiler command line. If you use the RESUME,
RESUME NEXT, or RESUME 0 fo1111, you must use the -X switch
instead.

The purpose of these switches is to allow the compiler to function
correctly when error-handling routines are included in a program.
See Section 5.3, "Compiler Switches," for a detailed explanation of
these switches. Note: Using these switches increases the size of
the REL and CMD files.

9.2.12 REM
REM statements are REMarks starting with a single quotation mark
or the word REM. Since REM statements do not take up time or
space during execution, you may use REM as desired. This
practice improves the readability of your programs.

9.2.13 RESUME
See the preceding discussion of ON ERROR GOTO.

9.2.14 RETURN
In addition to the simple RETURN statement, the compiler supports
RETURN <linenumber>. This allows a RETURN from a GOSUB to
an arbitrary <linenumber>, thereby circumventing normal return of
program control to the statement following the GOSUB statement.

9.2.15 RUN
The BASIC Compiler supports both RUN and RUN <linenumber>.
It does not support the "R" option with RUN. If you desire this
feature, use the CHAIN statement.

Note: RUN is used to execute CMD files created by the BASIC
Compiler and does not support the execution of BASIC source
files, as does the interpreter. Other CMD files not created with the
BASIC Compiler are executable with the RUN statement. These
can be CMD files created in languages other than BASIC.

9.2.16 STOP
The STOP statement is identical to the END statement, except that
it terminates your program at a point that is not necessarily its end.
It also prints a message telling you at which hexadecimal address
you stopped. If the -0, -E, or -X compiler switches are turned on,
then the message prints the line number at which you stopped. As
with the END statement, STOP closes all open files and returns

57

control to the operating system. STOP is normally used for
debugging.

9.2.17 TRON/TROFF
To use TRON/TROFF, the compiler -0 Debug switch must be used.
Otherwise, TRON and TROFF are ignored and a warning message
is generated.

9.2.18 USA
Although the USR function is implemented in the compiler to call
machine language subroutines, you can only pass parameters
through the use of POKEs to protected language routine. See
Appendix D for details on using the USR function.

9.2.19 WHILE/WEND
Like FOR/NEXT loops, WHILE/WEND constructions must be
statically nested. Static nesting means that each WHILE/WEND
pair, when nested within other FOR/NEXT or WHILE/WEND pairs,
cannot reside partly in and partly outside the nesting pair. For
example, the following construction is not allowed:

FOR I= 1 to 10
A=COUNT
WHILE A= 1

NEXTI ~·
A=A-1 ~
WEND

In addition, do not direct program flow into a WHILE/WEND loop
without entering through the WHILE statement.

See "FOR/NEXT," Section 9.2.8, for an example of this restriction
and for an example of correct static nesting.

9.2.20 WIDTH
The WIDTH statement sets the printed line width in number of
characters for the terminal or line printer.

The format is:

WIDTH [LPRINT] <integer expression>

If you omit the LPRINT option, the line width is set at the terminal.
If you include LPRINT, the line width is set at the line printer.

The <integer expression> must have a value in the range 15 to
255. The default width is 72 characters.

If <integer expression> is 255, the line width is "infinite"; that is,
BASIC never inserts a carriage return. However, the position of the
cursor or the print head, as given by the POS or LPOS function,
returns to zero after position 255.

58

-

-

{-'·

-

9.3 TRS-80 Commands in BASIC
The BASIC Compiler supports the following TRS-80 commands:

CLS
MEM
PRINT@
RANDOM
TIME$
Graphics BASIC Commands (requires graphics board)
SYSTEM ["command"]

9.4 BASIC Compiler Features not in
BASIC Interpreter

The BASIC Compiler supports some powerful and efficient features
not supported by BASIC Interpreter. These new features compile
with no problems, but keep in mind that you cannot run a program
using these features with your interpreter.

1. Double Precision Transcendental Functions

SIN, COS, TAN, SOR, LOG, and EXP return double­
precision results if given a double-precision argument.
Exponentiation with double-precision operands returns a
double precision result.

2. Fixed Stack

The BASIC Compiler uses a 256-byte fixed stack at the top of
memory. Consequently, you cannot branch indefinitely. For
every GOSUB issued, the program must execute a RETURN.
Nesting is allowed, but only up to 1 Q)Ql levels. If this limit is not
observed, your program crashes.

9.5 Other Differences
Other differences between the BASIC Interpreter and the BASIC
Compiler include the following:

1. Expression Evaluation - The BASIC Compiler performs
optimizations, if possible, when evaluating expressions.

2. Use of Integer Variables - The BASIC Compiler can make
optimum use of integer variables as loop control variables.
This allows some functions (and programs) to execute up
to 30 times faster than when interpreted.

3. Double Precision Arithmetic Functions - The BASIC
Compiler allows double-precision arithmetic functions,
including all the transcendental functions.

4. Double Precision Loop Variables - Unlike the interpreter,
the BASIC Compiler allows the use of double-precision
loop control variables.

59

5. String Space Implementation - To increase the speed of a_-_;
garbage collection, the implementation of the string space •
for the compiler differs from its implementation for the
interpreter.

9.5.1 Expression Evaluation
During expression evaluation, the BASIC Compiler converts
operands of different types to the type of the more precise
operand. For example, the follov,ting expression:

QR=J%+A! +Q#

converts J% to single precision, adds it to A!, converts the result to
double-precision, and adds it to Q#.

The BASIC Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter, the following statements yield 20000 for A%.

K%=20000
1%=20000
J%=20000
A%= (1% +J%)-K%

That is, J% is added to 1%. Because the resulting number is too
large for an integer representation, the interpreter converts the
result into a floating-point number. The final result (20000) is found
and converted back to an integer and saved as A%.

The BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual values are
known. Thus, the compiler generates code to perform the entire
operation in integer mode and arithmetic overflow occurs. If the -D
Debug switch is set, the error is detected. Otherwise, an incorrect
answer is produced.

Besides the above type conversion decisions, the compiler
performs certain valid optimizing algebraic transformations before
generating code. For example, the following program could
produce an incorrect result when run:

1%=20000
J%=-18000
K%=20000
M%=I%+J%+K%

If the compiler actually performs the arithmetic in the order shown,
no overflow occurs. However, if the compiler performs 1% + K% first
and then adds J%, overflow does occur. The compiler follows the
rules of operator precedence, and you may use parentheses to
direct the order of evaluation. You can guarantee evaluation
order in no other way.

9.5.2 Integer Variables
To produce the fastest and most compact object code possible,
make maximum use of integer variables. For example, the
following program executes approximately 30 times faster by

60

-

-\ ..

replacing "I", the loop control variable, with "1%" or by declaring I
an integer variable with DEFINT.

FOR 1=1 TO 10
A(I)=©
NEXT I

Also, it is especially advantageous to use integer variables to
compute array subscripts. The generated code is significantly
faster and more compact.

9.5.3 Double Precision Arithmetic Functions
The BASIC Compiler lets you use double-precision floating-point
numbers as operands for arithmetic functions, including all the
transcendental functions (SIN, COS, TAN, ATN, LOG, EXP, SOR).
The interpreter supports only single-precision arithmetic functions.

Your program development strategy when designing a program
with double precision arithmetic functions should be as follows:

1. Implement your BASIC program using single-precision
operands for all functions that you later intend to be double
precision.

2. Debug your program with the interpreter to determine the
soundness of your algorithm before converting variables to
double precision.

3. Declare all desired variables as double precision. Your
algorithm should be sound at this point.

4. Compile and link your program. It should implement the
algorithm that you have already debugged with the
interpreter, but with double the precision in your arithmetic
functions.

9.5.4 Double Precision Loop Control Variables
The compiler, unlike the interpreter, lets you use double precision
loop control variables. You may, therefore, increase the precision
of increment in loops.

9.5.5 String ·space Implementation
The compiler and interpreter differ in their implementations and
maintenance of string space. With the compiler, using either PEEK
or POKE with VARPTR, or using assembly language routines to
change string descriptors, may result in a "String Space Corrupt"
error. See more information on string space in the discussion of
the CALL statement, Section 9.2.1, and the USR function,
Section 9.2.17.

61

.· ~ ·.

'·-- APPENDIX A

(.

,e
\ ..

-

Creating a System of
Programs with the Runtime Module

The CHAINing with COMMON feature and the runtime module are
designed for creating large systems of BASIC programs that
interact with each other. In this section, a hypothetical system is
described to show the interactions in a large system.

The following integrated accounting system contains separate
packages for general ledger, accounts payable, and accounts
receivable. Within each package, the components are separate
programs, each of which is separately compiled, linked, and
loaded. At linktime, the load address in the BCLOAD file should be
the same for all programs.

A main menu program controls entry into each package. The
system structure is shown below:

MENU

GL AP AR

GL01 GL02 GL03 AP01 AP02 AP03 AR01 AR02 AR03

To use CHAINing with COMMON effectively, you must logically
structure the system and the COMMON information. In the system
pictured above, COMMON information exists within each of the
packages GL, AP, and AR. Each package contains a system of
three separately compiled programs. Furthermore, there may be
COMMON information between MENU and each of the packages.
Note that there may be overlapping sets of COMMON information.

The compiler's COMMON statement is not as flexible as the
interpreter's: With the compiler, COMMON areas must be the same
size in programs that CHAIN to each other.

This may be accomplished by:

1. Using the same COMMON declarations in all programs so
that all common information may be shared.

2. Using the same set of COMMON declarations within each
of the three packages, with no information shared with the
other packages or the main MENU program via COMMON.
In this case, there will be three sets of COMMON
declarations, one for each package.

For a large, integrated system of compiled programs the second
method gives more flexibility with the compiler, because program
control is switched from package to package through the main
MENU. Any common information that could be obtained from
MENU is obtained instead from the main program for each of the
packages GL, AP, and AR. This approach would be used with a
single package.

63

For the system shown above, the use of CHAIN and RUN a,)
commands in each major program is outlined in the following W
program fragments. Note: RUN loads the specified program as a
normal executable file and starts execution. For compiled BASIC
programs, a new copy of the runtime module is reloaded at that
time, allowing a new system of CHAINed programs to be started.
While CHAINing is in progress, the runtime module is in control
and therefore does not have to be reloaded for each program.

GL/BAS

1000 IF MENU=l THEN RUN "GL"
1010 IF MENU=2 THEN RUN "AP"
1020 IF MENU=3 THEN RUN "AR"

General Ledser

10 ' $INCLUDE: 'GLCOMDEF'
CGL) COMMON declarations

1000 CHAIN "GL01"
1010 CHAIN "GL02"
1020 CHAIN "GL03"
1030 IF MENU=YES THEN RUN "MENU"

AP/BAS Accounts Payable

AR/BAS

10 ' $INCLUDE: 'APCOMDEF'
(AP> COMMON declarations

1000 CHAIN "AP01"
1010 CHAIN "AP02"
1020 CHAIN "AP03"
1030 IF MENU=YES THEN RUN "MENU"

Accounts Receivable

10 ' $INCLUDE: 'ARCOMDEF'
CAR) COMMON declarations

1000 CHAIN "AR01"
1010 CHAIN "AR02"
1020 CHAIN "AR03"
1030 IF MENU=YES THEN RUN "MENU"

Each of the lower level programs XXYY (XX= GL, AP, AR,
YY = 01, 02, 03) should CHAIN back to the package main
program XX.

64

•

-

APPENDIX B

-

-

-

Source Listing Format

The source listing file format is described below. The discussion is
keyed to the sample listing on the next page.

Every page of the source listing has a header at the top. The left
portion of the first two lines contains the user-assigned title and
subtitle, which are set with the first source line.

In some versions of BASIC, the right side of the second line
contains the date, and the right side of the third line contains the
time. The "Offset" column specifies the hexadecimal offset from
the start of the executable file for each line of source The "Data"
column specifies the hexadecimal offset from the start of the data
segment for any data values generated by the source line. The
"Source Line" column contains a source line's line number, along
with the line itself. This line number and the source file name
identify runtime errors if the appropriate error checking is on.

Example: The following source listing is from a program compiled
with the -A switch (to include listing of disassembled object code).

BASIC Co111Piler PAGE 1

Pro!traM

Offset Oat.a Source Line BASIC COMPiler VS,34

0014 0007 10 , $TITLE: 'BASIC Co111Piler' $SUBTITLE:
'Pro!traM'

0014 0007 20 DEFINT A-Z
0014 0007 30 DIM A(50l

0014 0007 40 I $0CODE +
0014 0007 50 A(0) = 1: .A< 1) = 1

0014 ** !00000: CALL $432

0017 ** L00010: L00020: L00030: L00040:

L00050:

0017 ** LD HL,0001

001A ** LO (A%) ,HL
001D ** LO < A %+0002) ,HL
0020 006D 60 FOR I= 1 TO 24

0020 ** L00060: LO HL,0001

0023 ** LO < I %) ,HL
0026 ** 100001:

0026 006F 70 A(2*<I+1)) =
A<2*(I+1)-1)+A(2*<I+1l-2)+3

0026 ** L00070: LD HL ,< I %l

0029 ** ADD HL,HL
002A ** ADD HL,HL
0026 ** PUSH HL
002C ** LO DE ,A %+0002
002F ** ADD HL,DE
0030 ** LO E,<HL>
0031 ** INC HL
0032 ** LO D ,<HL>
0033 ** EX DE,HL
0034 ** LO CT: 01) ,HL

65

0037 ** POP HL -) 0038 ** PUSH HL
0039 ** LO DE ,A '.t

003C ** ADD HL,OE

0030 ** LO E, (HL>

003E \\ INC HL
003F \\ LO D, (HL>
0040 ** LO HL, (T: 01 l

0043 ** ADD HL,DE
0044 ** INC HL
0045 ** INC HL
0046 ** INC HL
0047 ** LO <T:02) ,HL

004A ** POP HL
0046 ** LO DE , A %+0004

004E ** ADD HL,DE
004F ** PUSH HL
0050 ** LO HL, (T:02 l

0053 ** EX DE,HL

0054 ** POP HL
0055 ** LO (HU ,E

0056 ** INC HL
0057 ** LO (Hll ,D

0058 006F 80 NEXT I
0058 ** L00080: LO HL, (I '.t l

0056 ** INC HL e, 005C ** LO (I '.t l ,HL
I

005F ** LO HL, < I '.tl .. ,

Two kinds of compiler messages appear in the listing: severe
errors and warnings. Do not link a compilation with severe errors.
You can use one with only warnings to generate code, but the
result may not execute correctly. Errors and warnings are listed in
Appendix G, "Error Messages."

Usually the location of an error in the source line is indicated by a
caret C), followed by a two-character code. At times, however, an
error in a line is not immediately detected, and the error indicator
may point to the end of a statement or the end of a line. This is
normally the case with TC ("too complex") errors.

-
66

(.
\. :_,

APPENDIX C

------------- --------------

ce

(__

Memory Maps

The following memory maps show layout of the runtime memory for
programs linked to the two runtime libraries, BASRUN/REL and
BASCOM/REL. Remember if you link to BASRUN/REL, the runtime
module is used at runtime.

Top of
Memory Stack Grows Downward

--

File Buffers Grow Downward

String Space Grows Upward

Extra Runtime Code & Data CMD file

User Program Code

Load User Program Data
address

in Named COMMON
BCLOAD

Blank COMMON

RUNTIME MODULE
21K

Contains most
commonly used
library routines

Bottom 3000H
of

Memory TRSDOS

Figure C-1. Runtime memory map of a program using the
BASRUN/CMD runtime module.

67

Top of
Memory

Stack Grows Downward

File Buffers Grow Downward

Runtime Library
Code and Data

User Program Code

User Program Data

TRSDOS

CMD file

3000H

Figure C-2. Runtime memory map of a program using the
BASCOM/REL runtime library.

68

.)

-

-

APPENDIX D

-

-

BASIC Assembly Language
Subroutines

All versions of BASIC have provisions for interfacing with assembly
language subroutines via the USR function and the CALL
statement.

The USR function allows assembly language subroutines to be
called in the same way BASIC intrinsic functions are called.
However, the CALL statement is the recommended way of
interfacing 8080/Z80 machine language programs with BASIC. It is
compatiblewith more languages than ist1TEr~
produces more readable source code, and it can pass multiple
arguments.

D.1 Memory Allocation
It is important to avoid stack overflow when calling assembly
language subroutines. Therefore, if additional stack space is
needed when an assembly language subroutine is to be called,
the BASIC stack can be saved and a new stack set up for use by
the assembly language subroutine. The BASIC stack must be
restored, however, before returning from the subroutine.

You can load the assembly language subroutine into memory by
means of the operating system or the BASIC POKE statement. If
you have the Editor Assembler, routines can be assembled with
the Editor Assembler and loaded using L80.

D.2 USR Function Calls
Although the CALL statement is the· recommended way of calling
assembly language sub.routines, the USR function call is still
available for compatibility with previously written programs.

The syntax of the USR function is:

USR[<digit>] [(<argument>)]

where: <digit> is from 0 to 9. <digit> specifies which USR
routine is being called (see DEF USR statement in the
BASIC Reference Manua•. If <digit> is omitted, USR0 is
assumed.

<argument> is ignored by the compiler. Arguments may
be passed only with the use of POKE statements to
memory locations known by the assembly language
procedure (see discussion below).

For each USR function, a corresponding DEF USR statement must
have been executed to define the USR call offset. This offset
determines the starting address of the subroutine.

When the compiler sees X = USRn (0), it generates the following
code:

CALL $U% + canst
LO (X%) ,HL

69

During execution, the program encounters this code, jumps to the -/
address of the CALL, performs the steps of your subroutine, and
then returns to resume execution where it left off. Your routine
should place the integer result of the routine in the HL register pair
prior to returning to the compiled BASIC program.

On return, as shown above, the contents of the HL register pair are
placed in the location of the variable X. Any other parameters to
be passed must be PEEKed from the main BASIC program, and
POKEd into protected memory locations. With this method of
passing parameters, the USR function works quite well. You must
take responsibility, however, to ensure that your code and any
variables you use are protected. This is more complicated than in
the interpreter because the top of memory pointer cannot be set
from within the compiled program. It must be set prior to executing
the compiled program, if any part of high memory is to be
protected.

If you do not want to use the above method of passing
parameters, you have three other choices:

1. If your machine language routine is short enough, you can
store it by making the first string defined in the program
contain the ASCII values corresponding to the hexadecimal
values of your routine. Use the CHR$ function to insert
ASCII values in the string. You can then find the start of
your routine by using the VARPTR function.

For example, for the string A$, VARPTR (A$) returns the
address of the length of the string. The next two addresses
are (first) the least significant byte and (then) the most
significant byte of the actual address of the string. This set-
up of the string space is different from the interpreter's.

Thus, to find the actual start address of your routine, use
the following BASIC instructions:

A$ = "String containing routine"
1% = VARPTR (A$)
AD% = PEEK (1% + 2) * 256 + PEEK (1% + 1)

AD% is the start address of your routine.

Note: Since strings move around in the string space, you must
adjust absolute references to reflect the current memory location of
the routine. To make your code position independent for the Z80,
use relative rather than absolute jumps.

2. The second method is to reset the default value of the load
address in the BCLOAD/L80 file. The BCLOAD/L80 file's
main purpose is to direct loading of your executable
program so that later the runtime module can be loaded
beneath it in memory. By increasing the load address, you
create free protected space between the end of the
runtime module and the start of the loading area. If you
increase the load address by 100H, for example, 256
bytes of free space are created. Machine language
routines or data can then be safely POKEd into this area.

70

-

-

•

-\._

3. A better alternative is to use the Editor Assembler to
assemble your subroutines. Then your subroutines can be
linked directly to the compiled program and referenced
using the CALL statement (see discussion of "CALL,"
section 9.2.1).

Da3 CALL Statement
You can also call asserribly language subroutine's with the CALL
statement. The syn!ax is:

CALL <global name> [(<argument list>)]

where <global name> contains an address that is the starting
point in memory of the subroutine. <global name> cannot be an
array variable name. <argument list> contains the arguments that
are passed to the external subroutine. <argument list> can
contain only variables.

A subroutine CALL with arguments results in a more complex
calling sequence. For each argument in the CALL argument list, a
parameter is passed to the subroutine. That parameter is the
address of the low byte of the argument. Therefore, parameters
always occupy two bytes each, regardless of type.

The method of passing parameters depends on the number of
parameters to pass:

1. If the number of parameters is three or fewer, they are
passed in the registers. Parameter 1 is in HL, 2 in DE (if
present), and 3 in BC (if present).

2. If the number of parameters- is greater than three, they are
passed as follows:

Parameter 1 in HL.

Parameter 2 in DE.

Parameters 3 through n in a contiguous data block. BC
points to the low byte of this data block (For example, to
the low byte of parameter 3).

Note: With this scheme, the subroutine must know how many
parameters to expect in order to find them. Conversely, the calling
program is responsible for passing the correct number of
parameters. There are no checks for the correct number or type of
parameters.

If the subroutine expects more than three parameters and needs to
transfer them to a local data area, a system subroutine named $AT
will perform this transfer. The $AT routine is listed below (it is
located in the FORTRAN library, FORLIB/REL). The routine is
called with HL pointing to the local data area, BC pointing to the
third parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2).

71

The subroutine is responsible for saving the first two parameters A,
before calling $AT. For example, if a subroutine expects 5 W
parameters, it should look like this:

SUBR: LO (PU ,HL iSAVE PARAMETER 1

EX HL,DE
LO <P2l ,HL iSAVE PARAMETER 2
LO A,3 iNO, OF PARAMETERS LEFT
LO HL,P3 ;POINTER TO LOCAL AREA
CALL SAT•• ,TRANSFER THE OTHER 3

PARAMETERS

CBodY of subroutine]

RET iRETURN TO CALLER
P1: OS 2 iSPACE FOR PARAMETER 1

P2: OS 2 iSPACE FOR PARAMETER 2
P3: OS 6 iSPACE FOR PARAMETERS 3-5

The argument transfer routine $AT is:

2

3

ll

5

6

7

8

9

10

11

12
13
1 ll

15

16

17

18

19

20
21

22
23

SAT::

AT!:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM,
POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE• OF PARAMS TO XFER <TOTAL-2)

EX HL,DE ;SAVE HL IN DE

LO H,6
LO L,C iHL = PTR TO PARAMS

LO CI (HL)
INC HL
LO 6,<HU
INC HL ;ec = PARAM ADR

EX HL,DE iHL POINTS TO LOCAL
STORAGE

LO <HU ,C
INC HL
LO <HU ,6
INC HL i STORE PA RAM IN LOCAL AREA

EX HL,DE iSINCE GOING BACK TO AT1

DEC A iTRANSFERRED ALL PARAMS?

JR NZ,AT1 ;NO, COPY MORE

RET iYES, RETURN

When accessing parameters in a subroutine, remember that they
are pointers to the actual arguments passed.

Note: The programmer must match the number, type, and length A
of the arguments in the calling program with the parameters W
expected by the subroutine. This applies to BASIC subroutines, as
well as those written in assembly language.

72

(Jt

APPENDIX E

re

-

Disk File Handling

Two types of disk data files may be created and accessed by a
BASIC program: sequential files and random access files.

Ea 1 Sequential Files
Sequential files are easier to create than random files but are
limited in flexibility and speed when it comes to accessing the
data. The data that is written to a sequential file is a series of
ASCII characters stored, one after another (sequentially), in the
order it is sent. It is read back in the same way.

The statements and functions that are used with sequential files
are:

OPEN
PRINT#
PRINT# USING
WRITE#
INPUT#
LINE INPUT#
EOF
LOC
CLOSE

See the BASIC Reference Manual for a more detailed discussion of
these commands.

E.1.1. Creating a Sequential File
The following program steps are required to create a sequential
file and access the data in the file:

1. OPEN the file in "O" mode.

2. Write data to the file using the
WRITE# statement. (PRINT# may be
used instead, but consult the BASIC
Reference Manual before doing so.)

OPEN "0",#1,"0ATA"

WRITE#1,A$;8$;C$

3. To access the data in the file, you CLOSE #1
must CLOSE the file and reOPEN it in OPEN "l",#1,"DATA"
"I" mode.

4. Use the INPUT# statement to read
data from the sequential file into the
program.

INPUT #1,X$,Y$,Z$

A program that creates a sequential file can also write formatted
data to the disk with the PRINT# USING statement. For example,
the statement

PRINT#1,USING"####.##,";A,8,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string serves to
separate the items in the disk file.

73

The LOC function, when used with a sequential file, returns the
number of sectors that have been written to or read from the file
since it was OPENed. For example,

100 IF LOC(1)>50 THEN STOP

would end program execution if more than 50 sectors had been
written to or read from file #1 since it was OPENed.

Program 1 is a short program that creates a sequential file, named
" ATA", from information you input at the terminal:

Pro~raM 1--Create a Sequential Data File

10 OPEN 11 0 11 t#l ,"DATA"
20 INPUT 11 NAME 11 ;N$
25 IF N$= 11 DONE 11 THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";H$
50 PRINT#l tN$;" , 11 ;0$;" ," ;H$
60 PRINT:GOTO 20

Execution of the program with sample input yields the following
example:

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.
Program 2 accesses the file "DATA" that was created in Program
1 and displays the name of everyone hired in 1978:

Pro~raM 2--Accessin~ a Sequential File

10 OPEN "I" t#l 1
11 DATA 11

20 INPUT#l ,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20

Running the program gives:

. -;

-

EBENEEZER SCROOGE
SUPER MANN -
InPut Past end at address xxxx
OK

74

(.•

(__

-

Program 2 reads, sequentially, every item in the file. When all the
data has been read, line 20 causes an "Input past end" error. To
avoid getting this error, insert line 15 which uses the EOF function
to test for end-of-file:

15 IF EOFC1) THEN END

and change line 40 to GOTO 15.

E.1.2 Adding Data to a Sequential File
Data can be appended to an existing sequential access file. It is
important, however, to follow carefully the procedure given below.

Warning: If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply open the
file in "O" mode and start writing data. As soon as you open a
sequential file in "O" mode, you destroy its current. contents.

The following procedure can be used to add data to an existing
file called "NAMES":

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "O" mode.

3. Read in the data in "NAMES" and write it to "COPY."

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY."

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that includes all
the previous data plus the new data you just added.

Program 3 illustrates this technique. It can be used to create or
add onto a file called NAMES. This program also illustrates the use
of LINE INPUT# to read strings with embedded commas from the
disk file. Remember, LINE INPUT# will read in characters from the
disk until it sees a carriage return (it does not stop at quotes or
commas) or until it has read 255 characters.

Pro1ram 3-- Addin1 Data
to a Sequential File

10 ON ERROR GOTO 2000
20 OPEN "I" ,#1,"NAMES"
30 REM IF FILE EXISTS, WRITE. IT TD "COPY"
40 OPEN 11 0 11 ,#2 ,"COPY"
50 IF EOFC1) THEN 80
60 LINE INPUT#! ,A$
70 PRINT#2,A$
80 GOTO 50
80 CLOSE #1
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TD FILE
120 N$= 1111 :INPUT 11 NAME 11 ;N$

75

130 IF N$= 11 11 THEN 200: 'CARR I AGE RETURN
EXITS INPUT LOOP

140 LINE INPUT "ADDRESS? ";A$
150 LINE INPUT "BIRTHDAY? 11 ;8$
180 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
180 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN 11 0 11

t

#2,"COPY":RESUME 120
2010 ON ERROR GOTO 10

The error handling routine in line 2000 traps a "File does not exist"
error in line 20. If this happens, the statements that copy the file
are skipped, and "COPY" is created as if it were a new file.

E.2 Random Access Files
Creating and accessing random files requires more program steps
than sequential files. However, there are advantages to using
random files, one of which is that random files require less room
on the disk, because BASIC stores them in a packed binary
format. (A sequential file is stored as a series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk - it is not
necessary to read through all the information, as with sequential
files. This is possible because the information is stored and
accessed in distinct units called records and each record is
numbered.

The statements and functions that are used with random files are:

OPEN
FIELD
LSET/RSET
GET
PUT
CLOSE
LOC
MKD$
MKI$
MKS$
CVD
CVI
CVS

See the BASIC Reference Manual for detailed discussion of these
statements and functions.

E.2.1 Creating a Random Access File
The following program steps are required to create a random
access file.

76

---. ,\
j

-

•

,'._
•/

'· .

(__

-

1. OPEN the file for random access ("R" OPEN "R",#1, "FILE",32
mode). This example specifies a
record length of 32 bytes. If the
record length is omitted, the default
is 128 bytes.

2. Use the FIELD statement to allocate FIELD #1, 20 AS N$, 4
space in the random buffer for the AS A$, 8 ASP$
variables that will be written to the

fil .

3. Use LSET to move the data into the LSET N$=X$
random buffer. Numeric values must LSET A$= MKS$ (AMT)
be made into strings when placed in LSET P$ = TEL$
the buffer. To do this, use the "make"
functions: MK!$ to make an integer
value into a string, MKS$ for a single
precision value, and MKD$ for a
double precision value.

4. Write the data from the buffer to the PUT #1,CODE%
disk using the PUT statement.

The LOC function with random files returns the "current record
number." For example, the statement

IF LOC (1)>50 THEN END

ends program execution if the current record number in file #1 is
higher than 50.

Program 4 writes information that is input at the terminal to a
random file.

Prosram 4--Create a Random Access File

10 OPEN 11 R11 t#1 ,"FILE" ,32
20 FIELD #1 ,20 AS N$, 4 AS A$, 8 ASP$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";X$
50 INPUT "AMOUNT";AMT
60 INPUT 11 PHONE 11 ;TEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$ <AMT>
90 LSET P$=TEL$
100 PUT #1 ,CODE%
110 GOTO 30

E.2.2 Accessing a Random Access File
The following program steps are required to access a random file:

1. OPEN the file in "R" mode. OPEN "R",#1, "FILE",32

2. Use the FIELD statement to FIELD #1 20 AS N$, 4 AS
allocate space in the random A$, 8 AS P$
buffer for the variables that will be
read from the file.

77

Note: In a program that performs both input and output on the ~ .•
same random file, you can often use just one OPEN statement and W
one FIELD statement.

3. Use the GET statement to move GET #1, CODE%
the desired record into the random
buffer.

4. The data in the buffer may now be PRINT N$
accessed by the program. PRINT CVS(A$)
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single precision
values, and CVD for double
precision values.

Program 5 accesses the random file "FILE" that was created in
Program 4. When the two-digit code set up in Program 4 is input,
the information associated with that code is read from the file and
displayed:

ProsraM 5--Access a Random Access File

10 OPEN "R" ,#1 ,"FILE" ,32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 ASP$
30 INPUT "2-DIGIT CODE";CODE%
40 GET # 1 ,CODE% A,
50 PRINT N$ W
80 PRINT USING 11 $$###+## 11 ;CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

Program 6 is an inventory program that illustrates random file
access. In this program, the record number is used as the part
number. It is assumed the inventory will contain no more than 100
different part numbers.

Note: This example must be compiled with the "-5" option switch.
Press <Break> to stop program.

Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to
determine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the
program performs. When you type in the desired function number,
line 230 branches to the appropriate subroutine.

Prorram G--InventorY

120 DPEN"R" t#l," INlJEN/DAT" ,38
125 FIELD#l ,1 AS F$,30 AS D$, 2 AS Q$,

2 AS R$,4 ASP$
130 PRINT:PRINT "FUNCTIONS: 11 :PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"

78

-

,e
'·

-\

150 PRINT 3,"DISPLAY INVENTORY
FDR ONE PART"

160 PRINT 4,"ADD TD STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW

REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTIDN";FUNCTION
225 IF (FUNCTIDN<1>DRCFUNCTIDN>6>

THEN PRINT
11 6AD FUNCTION NUMBER":GOTO 130

230 ON FUNCTION GOSUB
900,250,390,480,560,680

240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(FS><>255 THEN INPUT"OVERWRITE";

A$: IF AS<>"Y" THEN RETURN
280 LSET FS=CHR$(0)
290 INPUT 11 DESCRIPTIDN";DESC$
300 LSET DS=DESCS
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET QS=MKIS(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET RS=MKIS<R%)
350 INPUT "UNIT PRICE";P
360 LSET PS=MKSS(P)
370 PUT# 1 t PARTX.
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT

"NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT DS
440 PRINT USING "QUANTITY ON HAND#####";

Ct)I(Q$)
450 PRINT USING "REORDER LEVEL#####";

CVI(R$)
460 PRINT USING "UNIT PRICE$$##+##";

CVSCPS)
470 RETURN
480 REM ADD TD STOCK
490 GOSUB 840
500 IF ASCCF$)=255 THEN PRINT

"NULL ENTRY":RETURN
510 PRINT DS:INPUT "QUANTITY TD ADD ";A%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKISCQ%)
540 PUT#l ,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GDSUB 840
580 IF ASCCF$)=255 THEN PRINT

"NULL ENTRY":RETURN

79

580 PRINT D$
800 INPUT "QUANTITY TO SUBTRACT":S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)(0 THEN PRINT "ONLY"iQ'.ti"

IN STOCK":GOTO 800
630 Q%=Q%-S%
640 IF Q%=<CVICR$) THEN PRINT

"QUANTITY NOW"iQ:t;
"REORDER LEVEL"iCVI(R$)

650 LSET Q$=MKI$CQ%)
660 PUT#1 tPARTI
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
880 FOR I=1 TO 100
710 GET#1 ,I
720 IF CVICQ$)(CVICR$) THEN PRINT D$;

"QUANTITY"; CVICQ$) TABC50)
"REORDER LEVEL";CVICR$)

730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PARTI
850 IFCPARTI<1>ORCPART%>100) THEN

PRINT "BAD PART NUMBER":
GOTO 840 '
ELSE GET#1 ,PARTI:RETURN

880 END
800 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:

IF B$()"Y" THEN RETURN
920 LSET F$=CHR$C255)
930 FOR I=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

80

-

·-
APPENDIX F

{··-

·-

Floating-Point Numeric Format

This discussion provides the information needed to encode and
decode the floating-point representation. This information is
intended for advanced assembly language programmers, and
should not be viewed as an introduction to binary math.

Note that the encoding information presented below pertains only
to integral numbers. Encoding fractional numbers is a very
complex process.

Encoding-an Integral Floating-
Point Number ·

F.1

The floating-point representation ls a normalized binary
approximation of the argument number. It consists of two parts, the
mantissa and the exponent.

The mantissa is a 24-bit (single precision) or 56-bit (double
precision) normalized approximation of the number. The most
significant bit of the mantissa is always assumed to be a 1, after
normalization. Therefore, this bit is free to represent the sign of the
mantissa.

The exponent is an "excess-80" (80H) representation of the binary
(powers of two) exponent of the number. 80H is added to the·
binary exponent, so that positive exponents are assumed to have
an exponent of 80H or greater, while negative exponents are
assumed to have an exponent of 7FH or less. An exponent of zero
indicates the number itself is zero, regardless of the mantissa.

The procedure for encoding an integral number into floating-point
representation consists of 4 steps:

1. convert to binary

2. normalize

3. compute the exponent

4. store

This process may best be explained by example. In the steps
explained below, the number 5.00 is converted to a single
precision number.

1. The conversion to binary may be done in many ways. The
simplest of these is the subtraction method.

This method uses repeated subtractions of the powers of
two until the number is converted. For the purposes of our
example, a partial table of the positive powers of two is
shown:

2°=1 21 =2 22 =4 23 =8 24 =16, ...

Subtract the largest power of two that produces a positive
result or zero. If the result is positive or zero, mark a 1 in
the binary equivalent column as shown below. If the result
is a negative number, mark a zero in the binary equivalent

81

column. If there is a remainder, repeat the subtraction
process with the next power of two.

For example:

Conversion Binary equivalent
5-4= 1 1

4 (22) is the largest number that can be subtracted from
5. The result is a remainder of 1.

Now, see if the next power of tv•.io (21) can be subtracted
from the remainder.

Conversion
1-2 = -1

Binary equivalent
01

Since 1-2 produces a negative number, do not subtract.
Instead, mark a zero.

Repeat the subtraction process with the next largest
power of two (2°= 1).

Conversion
1-1 =0

Binary equivalent
101

One will subtract evenly, so the final binary result is 101.

Note: If you get to the point of subtracting 1 and the
result is not zero, you have made an error.

2. Now the binary number must be normalized. This is
accomplished by moving the binary point (the binary -
equivalent of the decimal point) to the left until it is
immediately left of the leftmost 1 of the number (the Most
Significant Bit); as the point is moved, count the number of
"shifts" that were made. Thus. 101.00 . . . becomes
.10100 ...

The next step in normalization is converting the Most
Significant Bit into the sign bit. Because floating-point
representation assumes that the Most Significant Bit is 1
(this is why the number is normalized). this bit represents
the sign of the number. Since the original number was
positive, the sign bit becomes zero (1 indicates negative).
Therefore, the normalized number is .0010 0000 ...

3. To convert the number to its final form, calculate the
exponent by adding 80H to the number of shifts performed
during normalization. Since the binary point was shifted 3
places, add 3. This results in an exponent of 83H. The
floating-point number is therefore .0010 0000 0000 0000
0000 0000 with an exponent of 83H, or 00 00 20 83 in Hex.

4. The floating-point number is stored as LSB (Least
Significant Byte), NSB (Next Significant Byte). MSB (Most
Significant Byte), and EXP (Exponent). with LSB at low
memory and EXP at high memory. This is the form
presented by a USA function call or a CALL statement.

82

-

• F.2 Decoding an Integral Floating-
Point Number

To decode an integral floating-point number, perform the above
steps in reverse: Find the MSB of the mantissa, check the Most
Significant Bit for ?ign, set the MSB, and de-normalize. For
example, the following steps are required to decode 00 00 20 83
Hex:

_____ __,_1__,__CLLLheck the Most Significant Bit of the Most Significant Byte
(MSB) for the sign of the number. In this case, the MSB is
0010 0000, so the sign of the number is positive.

•

-

2. Set the Most Significant Bit to 1. This results in a binary
number of 1010 0000.

3. De-normalize the number by shifting the binary point the
necessary number of places. 83H implies shifting the
binary point 3 places right, giving us 101.0 0000, or 5
decimal.

F.3 Decoding a Fractional Floating-
Point Number

If the number to be converted is a fraction, it will have a negative
exponent.

A negative exponent (7F or less) simply implies that the binary
point is shifted to the left instead of the right when decoding.
Therefore 1010 0000 with an exponent of 7OH would become
.0001 0100 after de-normalization. Because the sign bit was set,
we know the original number was negative. Computing from the
negative powers of two, we have 2·4 + 2·6 = .0625 + .015625 =
.078125. Since the sign of the number is negative, the final result
is -.078125.

83

ce

--

~rror Messages

During development of a BASIC program with the BASIC Compiler,
four different kinds of errors may occur: BASIC Compiler severe
errors, BASIC Compiler warning errors, L80 errors, and BASIC
runtime errors. This chapter lists error codes, error numbers, and
error messages.

G.1 Compiletime Errors
For errors that occur at compile time, the compiler outputs the line
containing the error, an arrow beneath that line pointing to ti ,e
place in the line where the error occurred, and a two-character
code for the error. In some cases, the compiler reads ahead on a
line to determine whether an error has actually occurred. In those
cases, the arrow points a few characters beyond the error, or to
the end of the line.

The BASIC Compiletime errors described below are divided into
Severe Errors and Warning Errors.

Severe Errors
CODE MESSAGE

BS Bad Subscript
Illegal dimension value
Wrong number of subscripts

CD Duplicate COMMON variable

CN COMMON array not dimensioned

co COMMON out of order

DD Array Already Dimensioned

FD Function Already Defined

FN FOR/NEXT Error
FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

IN INCLUDE Error
$INCLUDE file not found

LL Line Too Long

LS String Constant Too Long

OM Out of Memory
Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

ov Math Overflow

SN Syntax error - caused by one of the following:
Illegal argument name
Illegal assignment target
Illegal constant format

85

... ·.·-~ .. /,··:-
APPENDIX G

SQ

TC

TM

Illegal debug request
Illegal DEFxxx character specification
Illegal expression syntax
Illegal function argument list
Illegal function name
Illegal function formal parameter
Illegal separator
Illegal format for statement number
Illegal subroutine syntax
Invalid character
Missing AS
Missing equal sign
Missing GOTO or GOSUB
Missing comma
Missing INPUT
Missing line number
Missing left parenthesis
Missing minus sign
Missing operand in expression
Missing right parenthesis
Missing semicolon
Missing slash
Name too long
Expected GOTO or GOSUB
String assignment required
String expression required
String variable required
Illegal syntax
Variable required
Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO
Illegal FOR loop index variable
Illegal COMMON name
Missing THEN
Missing BASE
Illegal subroutine name

Sequence Error
Duplicate statement number
Statement out of sequence

Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too many variables for INPUT

Type Mismatch
Data type conflict
Variable must be of same type

86

,, . I~- UC

UF

WE

/0

-E

-X

Unrecognizable Command
Statement unrecognizable
Command not implemented

Function Not Defined

WHILE/WEND Error
WHILE without WEND
WEND without WHILE

Division by Zero

Missing "-E" Switch

Missing "-X" Switch

Warning Errors
CODE

MC

ND

SI

?Loading Error

MESSAGE
Metacornmand Error

Array not Dimensioned

Statement Ignored
Statement ignored
Unimplemented command

The last file given for input was not a properly
formatted L80 object file.

?Out of Memory Not enough memory to load program.

?Command Error Unrecognizable L80 command.

G.2 L80 Errors

?<file> Not Found <file>, as given in the command string, did not
exist.

%Mu It. Def. Global YYYYYY
More than one definition for the global (internal)
symbol YYYYYY was encountered during the
loading process. This means two subroutines
with the same ENTRY point were specified in
the L80 command line.

%Overlaying Program Area
Data

?Intersecting Program Area
Data

If you receive either of these error messages,
you have set the -0 and -P switches too close
together. Reset the :<address> portion of both
switches so that the locations are farther apart.

87

Origin Above Loader Memory, Move Anyway (Y or N)?
Below

Loader memory is 5200H to high memory. If
you received this error message, you specified
th~ -D or the -P switch with an address outside
this range. Reset the : <address> portion of the
switch(es).

?Can't Save Object File

G.3 Runtime Errors

A disk error occurred when the file was beir 19
saved. Almost always when you receive this
message, you can assume that there is not
enough disk space free in which to store the
program.

The following errors may occur at program runtime. The error
numbers match those issued by the BASIC Interpreter. The
compiler runtime system prints long error messages followed by an
address, unless -D, -E, or -X is specified in the compiler command
line. In those cases, the error message is also followed by the
number of the line in which the error occurred.

When you receive an error that gives the address where the error
occurred, you can review the listing file to find the correct line
number. Subtract the hexadecimal address of the program origin ---
from the error address. Find the difference in the left column of
hexadecimal numbers in the listing file. When you find the line
which corresponds to the difference between the program origin
and the error address, the line number will be the line which
contains the error.

Note that if you have deleted the listing file, you will need to
recompile it. Enter the command:

BASCOM ,LSTfile:<drive> = BASfile

Or, if you have a printer, obtain a hard copy:

BASCOM ,LPT = BASfile

The error numbers given below correspond to the value returned
for BASIC.

NUMBER MESSAGE

2

3

4

Syntax Error
A line is encountered that contains an incorrect
sequence of characters in a DAT A statement.

RETURN without GOSUB
A RETURN statement is encountered for which there
is no previous, unmatched GOSUB statement.

Out of Data
A READ statement is executed when there are no
DAT A statements witr-i unread data remaining in the
program.

88

•

t'·· 5 Illegal Function Call
A parameter that is out of range is passed to a math
or string function. A function call error may also
occur as the result of:

A negative or unreasonably large subscript

A negative or zero argument with LOG

A negative argument to SQR

A negative mantissa with a non-integer exponent

A call to a USR function for which the starting
address has not yet been given

An improper argument to ASC, CHA$, MID$,
LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRING$, SPACE$, INSTR, or
ON ... GOTO

A string concatenation that is longer than 255
characters

6 Floating Overflow or Integer Overflow
The result of a calculation is too large to be
represented within th~ range allowed for floating
point numbers.

9 Subscript Out of Range

/ - An array element is referenced with a subscript that
is outside the dimensions of the array.

11 Division by Zero
A division by zero is encountered in an expression,
or the operation of involution results in zero being
raised to a negative power.

14 Out of String Space
String variables exceed the allocated amount of
string space.

19 RESUME without Error
A RESUME statement is encountered before an error
trapping routine is entered.

21 Unprintable Error
An error message is not available for the error
condition that exists. This is usually caused by an
ERROR with an undefined error code.

50 Field Overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a
random file.

51 Internal Error
An internal malfunction occurs in the BASIC
Compiler.

89

52

53

54

55

57

58

61

62

Bad File Number
A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

File Not Found
A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disk.

Bad File Mode
An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file, or to execute
an OPEN with a file mode other than I, 0, or R. ·

File Already Open
A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file that
is open.

Disk 1/0 Error
An 1/0 error occurred on a disk 1/0 operation. The
operating system cannot recover from the error.

File Already Exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

Disk Full
All disk space has been allocated.

Input Past End
An INPUT statement reads from a null (empty) file,
or from a file in which all data has already been
read. To avoid this error, use the EOF function to
detect the end of file.

63 Bad Record Number
In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767) or
is equal to 0. ·

64 Bad File Name
An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too many
characters).

67 Too Many Files
The 255 file directory maximum is exceeded by an
attempt to create a new file with SAVE or OPEN.

The following additional runtime error messages are severe and
cannot be trapped:

Internal Error - String Space Corrupt

Internal Error - String Space Corrupt during G.C.

Internal Error - No Line Number

.~

·-

The first two errors usually occur because a string descriptor has -
been improperly modified. (G.C. stands for garbage collection.)

90

-

The last error occurs when the error address cannot be found in
the line number table during error trapping. This occurs if you have
forgotten to use either the -X or -E compiler switch for programs
that use RESUME and ON ERROR GOTO statements.

91

INDEX

$INCLUDE 47 CLOSE 73, 76
%Mult. Def Global YYYYYY 87 Code Relative 12-13
%Overlaying Program Area 87 Command file 39
,A-SAVE OPTION 21 Commands not implemented 59
,LPT 28 COMMON 53
,TTY 28 BLANK 54
-4 switch (compiler) 30 NAMED 54
-5 switch (compiler) 30 Compile time 12
-A switch (compiler) 30, 33 Compiler severe errors 85-87
-D switch (compmcile=r+) -~3-trQt--, -'-13~3-,, 41'r3at--,_...5.+7-, ------1c"'-o~m~p,riit,.,le~r ~sy~n-ta=x~__,,.,2~5-----------

58, 60 Compile time error messages 85-87
-0 switch (linker) 40, 41, 87 Compiling 25
-E switch (compiler) 30, 32, 57 CONT 23
-E switch (linker) 40 Convention switches 29
-H switch (linker) 40, 44 CVD 76
-M switch (linker) 40, 43 CVI 76
-N switch (compiler) 30, 32 CVS 76
-N switch (linker) 40, 41 Debug code switch, -0 30, 33
-N:P switch (compiler) 41 Debugging 23
-0 switch (compiler) 30, 33 DEFDBL 54
-0 switch (linker) 40 DEFINT 54
-P switch (linker) 40, 41, 87 DEFSNG 54
-R switch (linker) 40, 42 DEFSTR 54
-S switch (compiler) 30, 34 Device names as filenames 28-29
-S switch (linker) 40, 42 DIM 55
-T switch (compiler) 30, 31 Double precision arithmetic 61
-U switch (linker) 40, 43 Drive designations 28
-X switch (compiler) 30, 33, 42 END 55
-Z switch (compiler) 30, 33 EOF 73, 75
4.51 execution switch, -T 31 Error handling 76
4.51 lexical switch, -4 31 Error handling switches 29
5.0 lexical switch, -5 29 Error messages 85-91
?<file> Not Found 87 linking 87-88
?Can't Save Object File 88 runtime 88-91
?Command Error 87 severe 85-87
?Loading Error 87 warning 87
?Out of Memory 87 Expression evaluation 60
A option to SAVE 21 Extensions to filenames 27
Argument in CALL statement 71 FIELD 76
Array variables 61 Filename extensions 27
ASCII format 21 Floating-point representation 81
Assembly language subroutines 69 FOR/NEXT 55
BASCOM/REL 13, 33 FORLIB/REL 71
BASIC compiler procedures 21 Fractional floating-point numbers 83
BASIC learning resources 9 FRE 56
BASIC runtime errors 88 GET 76
BASRUN/CMD 13 Global Reference 12
BASRUN/REL 13 Unbound 12
BCLOAD/L80 39 Undefined 12
CALL 52, 69-72 INCLUDE 48

- CHAIN 52 Include code switch, -A 30, 33
CHA$ 70 INCLUDE metacommand 47-48
CLEAR 53 INPUT# 73

93

Integer variables 60-61
Integral floating-point numbers
L80 errors 87-88
Language comparison 51
Learning more about BASIC 9
LINE INPUT# 73
Line length 21
Line number switch, -N
LINESIZE metacommand

30, 32
49

Link time 12
Linking 13, 18, 35
LIST metacommand 49
LOC 73, 76, 77
Long string switch, -S
Loop control variables
LSET 77
MEM function
Memory Maps
Metacommands

$INCLUDE
$LINESIZE
$LIST 49

57
67

47-50
48
49

$0CODE 49
$PAGE 50
$PAGEIF 50
$PAGESIZE 49
$SKIP 50
$SUBTITLE 49
$TITLE- 49

MKD$ 77
MKI$ 77
MKS$ 77
Module 12
Nondisclosure agreement
OCODE metacommand
ON ERROR GOTO 57

30, 34
61

4
49

81

ON ERROR GOTO switch, -E
ON ERROR GOTO switch, -X

30, 32
30

OPEN 73, 76
Operational Differences 51
Operators 60
Optimizations 11
Origin above loader memory
Origin below loader memory
Other differences 59-60
Overflow 60

50

88
88

50
49

PAGE metacommand
PAGEIF metacommand
PAGESIZE metacommand
Parameters passed in CALL

statement 71
POKE 69-70
PRINT# 73

PRINT# USING 73
Program development process 13-15
PUT 76
Random access files 76
Relocatable 12-13
RESUME 57
RETURN 57
Routine 13
Royalty information 4
RSET 76
RUN 23, 57
Running a program 45
Running the DEMO program 19-20
Runtime 12
Runtime errors 88-90
Runtime library - BASCOM/REL 13
Runtime library - BASRUN/REL 13
Runtime Module 70
Runtime support 13
Runtime support routines 13
SAVE 21
Sequential files 73-76
Severe errors (compiler) 85-87
SKIP metacommand 50
Special code switches 33-34
Statements not implemented 51-52
Static nesting 55
STOP 57
String space 61
Subscripts 55
SUBTITLE metacommand 49
Switch -N:P 40
Switches

Compiler
-4 30
-A 30
-0 30
-E 30
-N 30
-0 30
-S 30
-T 30
-X 30
-Z 30

Linker
-0 40
-E 40
-N 40
-P 40

Syntax
compiler 25
linker 35

Syntax notation 8 -
94

System requirements 3
TITLE metacommand 49
TROFF 23, 58
TRON 23, 58
Unbound Global Reference 12
Undefined Global Reference 12
USR 58
VARPTR 70
Warning errors 87
WHILE ... WEND 58
WIDTH 58
WRITE# 73
ZS© switch, -Z 33

e
95

